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Considering the proliferation of responses to Piantadosi’s original 
paper and the ongoing debate sparked by this special issue of the Italian 
Journal of Linguistics, it is clear that the discussion has touched a raw 
nerve in linguistic theorizing. 

In the original target paper (Chesi this issue), I illustrated three 
prototypical (and, in many respects, extreme) positions – the computa-
tional, theoretical, and experimental perspectives – without explicitly 
endorsing any of them. Instead, I attempted to highlight what I believe 
are the key weaknesses of each of these prototypical stances, ultimately 
concluding that formal (i.e. ‘generative’) linguistics – more specifically, 
Minimalism, my theoretical comfort zone – must adopt practices and 
tools that are common in both computational and experimental fields.

As noted by most respondents, the title and some of the more 
extreme statements were intended as mild provocations to draw atten-
tion to core issues affecting linguistic theorizing. My position – somehow 
obscured behind the ‘three-body problem’ – is that any relevant scientif-
ic progress is driven by theoretical insight, not by trawling using experi-
mental or computational methods that are cost-inefficient, energy-inten-
sive, and ultimately unsustainable. Moreover, in full agreement with 
most of the replies, I believe that the success of certain large language 
models (LLMs), which are based on specific architectural assumptions, 
does not constitute a refutation of the generative paradigm. On the 
contrary, it strongly supports several key intuitions that have emerged 
within the generative linguistic tradition (Rizzi this issue). However, a 
concrete problem of ‘incommensurability’ arises (Hao this issue), as dif-
fering methodologies and specialized jargon (Butt this issue) often result 
in circular, unresolved discussions. 

Before turning to the core of my final remark, let me first clarify 
a widespread confusion found in many of the critiques of Piantadosi’s 
position that ‘LLMs express Theories’. A general attitude in the critical 
literature toward this statement reflects a criticism oriented towards 
LLM models, rather than a critique of model architecture. The differ-
ence is substantial, as no generative linguist would ever conflate an 
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adult’s actual grammar with the Language Acquisition Device (LAD) 
that enabled the individual to attain a mature state of linguistic com-
petence. Exactly in the same way, LLMs express something very similar 
to adults’-like mature competence. I believe the parallel between the 
LAD and the network architecture used to train the language model is 
fundamental for understanding in what sense LLMs might indeed mean-
ingfully express theories. From this perspective (Baroni 2023), network 
architectures can be seen as potential implementations of structural 
intuitions (or ‘inductive biases’, Goyal & Bengio 2022) and deserve far 
more respect than they are typically afforded by prominent generative 
linguists, who reductively criticize LLMs without seriously addressing 
the architectural and training-regimen factors that enabled the develop-
ment of these models. Fortunately, some of the more substantive cri-
tiques of the ‘LLMs express theories’ position are included in the replies 
(e.g. Onea et al. this issue), and we should take this opportunity to pre-
sent well-grounded perspectives on the matter.

Several important points have been raised in the replies, which, in 
the spirit of constructive and productive dialogue, I will attempt to sum-
marize in three arguments that may help readers navigate the range of 
perspectives. Those are:
1.	 Lack of Explanation (LoE) argument: LLMs generate predictions 

that are not grounded in intelligible or consistent theories or 
hypotheses, raising concerns about their explanatory value.

2.	 Lack of Formalization (LoF) justification: While intuitions must 
eventually be precisely formulated, preliminary ideas can still 
significantly advance research before being fully formalized and 
coherently integrated into a theoretical framework. Moreover, theo-
retical disagreement often signals vitality and the ongoing evolu-
tion of a paradigm.

3.	 Divergent Goals (Goal) argument: Generative linguistics is commit-
ted to a cognitive perspective, whereas LLMs are primarily commer-
cial tools developed to address computational downstream tasks.
I will briefly address each of these points in the following sections.

1. The Lack of Explanation (LoE) Argument

Almost all replies concur that ‘simulation’ is not equivalent to 
‘explanation’. LLMs effectively mimic linguistic production but (§1.1), 
although they may operate within the same computational domain (i.e. 
achieve observational adequacy), the level of description they provide 
is fundamentally disconnected from the one required to account for the 
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human linguistic faculty (Ginsburg this issue). Moreover, the mechanisms 
by which LLMs generate language are largely unintelligible, which pre-
cludes them from being considered theories in the strict sense (Ginsburg 
this issue; Onea, Kobayashi & Wurmbrand this issue; Rizzi this issue). In 
addition (§1.2), the architectures underlying LLMs often disregard basic 
grammatical intuitions, particularly structural-dependency constraints 
that are central to generative theory (Fong this issue; Ginsburg this issue; 
Ramchand this issue). These two points deserve further elaboration.

1.1. On Intelligibility: From the Computational Level to the Algorithmic 
Level
In the target paper, I made a careful effort to articulate all three 

levels of adequacy in a manner that is both measurable and compara-
ble. While it is tautological that a model capable of generating any sort 
of grammatical sentences to which it has never been exposed must be 
considered ‘observationally adequate’ with respect to language L, the 
absence of explicit ‘rules’ at certain levels does not entail the absence 
of an intelligible deductive apparatus at another level. For this reason, 
I decided to provide a definition of Descriptive Adequacy that simply 
measures the theory size and puts in background the notion of ‘intel-
ligibility’ (Rizzi this issue). While we all implicitly agree on the fact that 
a theory is useful and elegant if it is simple and understandable in each 
of its deductive steps, much debate has arisen from the intuition that 
this ‘simplicity’ and ‘understandability’ might not be formulable at cer-
tain high levels, but only at lower ones. In the history of science, it is 
clear how the scope of ‘intelligibility’ has been reduced – from Galileo’s 
Scientific Revolution, to Chomsky’s Cognitive Revolution (Chomsky 
2012), and more recently, to contemporary causal accounts framed in 
terms of ‘functional intelligibility’ (Cao & Yamins 2024). Returning to 
the connectionist discussion, ‘linguistic complexity’ was often regarded 
as an emergent property, with the only simple and intelligible level 
being that of the lowest artificial neural network (ANN) units and con-
nections (Rumelhart, McClelland & PDP Research Group 1986) – the 
algorithmic level. According to the Minimalist framework, simplicity 
must be described at the level of abstract structure-building operations – 
the computational level. This difference in levels of analysis often leads 
to misunderstanding, as it involves the comparison of two fundamental-
ly ‘incommensurable’ intuitions (Hao this issue) unless linking hypothe-
ses are explicitly formulated. I am firmly convinced that all experiments 
conducted since the early works of Rumelhart, McClelland, Hinton, and 
colleagues – particularly those addressing core linguistic problems such 
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as English past tense acquisition (Rumelhart & McClelland 1986) – have 
yielded meaningful results only when specific architectural solutions 
were adopted. For instance, the successful modeling of past tense forma-
tion required a specific phonetic encoding of the input (Wickelphones, 
Wickelgren 1969) paired with a particular ANN architecture: a pattern 
associator network (McClelland & Rumelhart 1991). Despite certain 
naiveties in the early experiments – such as inconsistencies in train-
ing regimens and learning trends interpretation – subsequent research 
continued and began to explicitly address ‘cognitive plausibility,’ 
understood as the implementation of specific architectural constraints 
designed to enhance the performance of these models (Kirov & Cotterell 
2018).1

In this spirit, the notion of ‘(genuine) explanation’ – often invoked 
without providing measurable criteria – appears to be overused in recent 
generative papers (Chomsky et al. 2023: XX). As Chomsky admitted 
(Chomsky 1968b), this is a rather slippery concept and a further source 
of potential ‘incommensurability’ (Hao this issue).2

Intuitively, I agree with all the respondents who have highlighted 
that notions such as C-command possess explanatory power (Rizzi this 
issue). However, if we aim to measure this ‘explanatory power’, the only 
viable approach is to compare the ‘simplicity’ (Descriptive Adequacy) 
and ‘efficiency’ (Explanatory Adequacy) of a theoretical model by 
assessing how the implementation of such constraints functions within 
a fully developed theory. For instance, C-command can be formalized 
algorithmically as a derivational constraint that applies at each Merge 
operation, or alternatively, it can be implemented as a representational 
filter applied to a structural fragment before or after Spell-Out. I do not 
believe these two approaches will prove equivalent – neither in terms of 
theory size (‘simplicity’ or Descriptive Adequacy), nor in terms of effec-
tive acquisitional constraints (‘efficiency’ or Explanatory Adequacy).

With regard to the notion of ‘theory size’ it is worth noting that 
Chomsky began engaging with a related concept of simplicity in his 
early work (as briefly mentioned by Haspelmath this issue), and more 
recently revisited the issue from a critical standpoint (Chomsky 2021a). 
In this context, the example he offers is illuminating, though arguably 
in the opposite direction from what he intends: rather than supporting 
the claim that ‘size should not matter,’ it may highlight the relevance of 
theoretical economy. 

Briefly, Chomsky (2021a: 7) proposes two Context-Free Grammars, 
G1 and G2 as illustrated in (1). These grammars are identical in size, 
having the same number of rules and symbols. He argues, however, that 
only G1 provides a ‘genuine explanation’ by capturing the optionality of 
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the element B (an adjunct, such as in the phrase: [Y read] [W the book]  
[B in the library]) 

(1)	 G1 = {X → YWB, X → YW}
	 G2 = {X → BWY, X → YW}

Indeed, under even a basic implementation of the Minimum 
Description Length (MDL) intuitions – using a simple size-based metric – 
we can already predict the superiority of G1 over G2. This is because G1 
is ‘compressible’, as YW is a shared prefix of the rewritten part, whereas 
G2 lacks such redundancy. As a result, G1 can be encoded in a more 
compact form (G1 = {X → YW(B)}), aligning with the criterion of supe-
rior ‘descriptive adequacy’ (Chesi this issue: 10). From this perspective, 
the MDL objective subsumes the incommensurable notion of ‘genuine 
explanation’ in a quantifiable manner.

Graf (Graf this issue) is the only contributor in the replies who seri-
ously challenges the assumptions underlying the MDL framework. He 
criticizes MDL metrics, particularly in cases where the ‘corpus cost’ 
– used as a proxy for the computational domain to approximate obser-
vational adequacy – makes the ‘grammar cost’ negligible (Ermolaeva 
2023). This is a concrete risk that can be mitigated only by adopting a 
‘rationalist’, rather than ‘empiricist’, approach – as previously argued 
(Chesi this issue: 18). We do not need ‘a bigger corpus’ to demonstrate 
that a theory is observationally and descriptively more adequate; a 
few additional contrasts that selectively challenge specific theoreti-
cal assumptions are sufficient.3 As Marantz (2019: 8) puts it, “puzzles 
are counterexamples to predictive linguistic theories that arise in the 
absence of an alternative theory that predicted them.” All remain-
ing data can, at least provisionally, be treated as ‘data dust’ – data 
that, while not immediately relevant, may gain significance in light of 
future theoretical developments (Wiltschko this issue). Continuing with 
another illuminating claim by Marantz (2019), as cited in Onea et al. 
(this issue): “Linguists predict data they don’t have, the body of empirical 
generalizations uncovered by the methodology grows year by year, and 
alternative accounts of phenomena are in fact pitted against each other, 
with the losers no longer viable [emphasis added]”. I would fully 
endorse Marantz’s claim, and I sincerely hope he is correct. However, I 
am compelled to observe that various blatantly incorrect generalizations 
continue to be propagated from one peer-reviewed paper to another, 
often without contributing any clear theoretical advancement (Butt this 
issue).
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Unfortunately, none of the respondents explicitly addresses the 
(speculative) notion of ‘data dust.’ Stabler engages with a related issue, 
rephrasing the problem of ‘dust under the carpet’ as a matter of ‘dust 
on the lenses’ (Stabler this issue: 159). However one chooses to frame it, 
certain confounding data that fail to align with any coherent hypothesis 
must be set aside. Temporarily disregarding such data allows linguists to 
concentrate on promising contrasts (Rizzi this issue) – unless, of course, 
those data are systematically organized and thereby transformed into 
linguistic puzzles, in the sense articulated by Marantz (2019).

Generally, it holds for any set of linguistic data that the most effi-
cient theory – the one capable of predicting all grammatical sentences 
– will also be the one that most effectively and precisely compresses 
the reference corpus. However, we are not seeking a lossless, zip-like 
compression algorithm (Katz 1986). Our theory should not preserve 
irrelevant details such as the exact wordings and orderings of individual 
sentences. Instead, we require a lossy algorithm – one that discards a 
substantial amount of information while retaining the ability to gener-
ate and recognize only grammatical sentences. To be clear, our interest 
in LLMs should not stem from their ability to pass the Turing Test, but 
rather from the architectural and training assumptions that enable them 
to consistently generate grammatical sentences and make human-like 
judgments about grammaticality through minimal pair comparisons.

1.2. On Grammatical Intuitions
It is true that most architectures do not incorporate relevant 

linguistic considerations into their design (but see §1.1 and note 1). 
Notably, the widely adopted attention-based mechanism – fostered by 
the (possibly ‘social,’ in the sense of Hao this issue) success of the unpeer-
reviewed paper by Vaswani et al. (2017) – bears little resemblance to 
‘attention’ as understood in psycholinguistics, nor does it reflect relevant 
linguistic structural constraints (Fong this issue; Onea, Kobayashi & 
Wurmbrand this issue). Similarly, the training algorithms appear implau-
sible in many respects (Ramchand this issue).4 

However, this does not imply that grammatical principles cannot 
be integrated into a network architecture, thereby constraining the com-
putational flow according to specific structural intuitions (Sartran et al. 
2022). To clarify this point, consider modifying a specific gate within 
a computational graph to implement the operation Merge.5 This may 
appear complex, but it is essentially what we do when fully formalizing 
a structure-building operation such as Merge. Consider the first Merge 
example discussed in the target paper, here repeated:
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(1)	 Merge(scolds, Bill) = {scolds, Bill}

Any ANN architecture simply encodes <scolds> and <Bill> (or 
the sub-tokens from which they are composed) as vectors – i.e. sequenc-
es of numbers representing abstract features relevant to the intended 
computation (Butt this issue; Onea, Kobayashi & Wurmbrand this issue). 
These vectorial representations – commonly referred to as ‘word embed-
dings’ in computational jargon – may allocate specific components to 
encode a word’s categorial status, relevant agreement features (e.g. per-
son and number), and selectional properties. For instance, one compo-
nent might represent external argument selection, another internal argu-
ment selection, with additional components potentially encoding further 
categorical or semantic specifications. In the end, ‘Bill’ and ‘scolds’ will 
be represented by vectors such as <1, 0, …, 1> or <1, 0, …, 0>, 
which can be approximately interpreted at an intelligible level as <V, 
N, …, person, number, … > as in (2):6

(2)	 scolds =	 <1, 	 0, …,	0, 	 0, 	 1, 			   1, 		  … > 	 
Bill = 	 <0, 	 1, …,	0, 	 0, 	 0, 			   0, 		  … > 
			   <V,	 N, …,	pers,	 numb, arg_external, 	 arg_internal, 	… >

While I fully agree with the point made by Onea et al. (this issue) 
– particularly with regard to the opaque manner in which ‘vectorializa-
tion’ is implemented as a necessary preliminary step for compressing 
lexical input and reducing the number of early parameters to be tuned7 
– the fundamental question a generative linguist might ask is how 
Merge might operate on these representations. For the purposes of this 
inquiry, we can reasonably assume that a meaningful vectorial repre-
sentation is manually provided for each relevant lexical item, thereby 
bypassing the preliminary parameters associated with vectorialization 
or word embedding. This approach makes explicit the hypotheses about 
what should be represented within the ‘black box’ (Ginsburg this issue; 
Onea, Kobayashi & Wurmbrand this issue; Zamparelli this issue) and 
what should instead be subject to learning.8 For example, in the BabyLM 
2024 Challenge, we evaluated various mathematical hypotheses – such 
as vector summation, concatenation followed by a sigmoid transfor-
mation, dot product, and point-wise multiplication – and ultimately 
found that concatenation combined with a sigmoid transformation9 best 
implemented a specific version of a unification procedure, a well-known 
concept within the HPSG framework (Pollard & Sag 1994), yielding the 
most accurate predictions (Chesi et al. 2024). The results of our experi-
ments barely reached the baseline on the BLiMP benchmark; however, 
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we demonstrated that modifying the gating mechanism in this way 
induces some degree of linguistic coherence in the behavior of our Small 
Language Model, which was trained on a naturalistic, child-directed 
corpus. Specifically, the trained model consistently selected either the 
grammatical or the ungrammatical item over 80% of the time across 
groups of minimal pairs representing specific linguistic phenomena. It is 
important to highlight that an overall accuracy around 50% may reflect 
either entirely random performance – for instance, when the model 
achieves approximately 50% accuracy across groups of phenomena that 
differ only in irrelevant lexical variation within a given syntactic pat-
tern – or a coherent linguistic behavior, such as 90% accuracy on half 
of the phenomena and only 10% on the other half (consistently select-
ing the ungrammatical alternative). Overall, both models perform at 
approximately 50% accuracy; however, only the second model exhibits 
a sufficient linguistic consistency. I believe that these kinds of ‘technical 
solutions’ offer effective linking hypotheses between the computational 
and algorithmic levels, as envisioned by many (Butt this issue; Ramchand 
this issue), potentially bridging the gap between linguistic theorizing 
and language modeling in a productive way – likely aligning with the 
expectations for small-scale experiments proposed by Onea, Kobayashi 
& Wurmbrand (this issue). It is important to remember that, to conclude 
that our theory is explanatorily adequate, we ask more than simple 
implementations of structure-building operations: the model must also 
be able to bootstrap from Primary Linguistic Data (PLD) and consistently 
exhibit adult-like performance after reasonable exposure to such input. 
Without seriously engaging with the acquisitional perspective – in gen-
erative linguistic terms, or ‘training’ in computational terms – a theory 
can, at best, be considered “descriptively adequate”.

1.3. On Unboundedness
The lack of ‘grammatical intuitions’ in LLMs has also been sup-

ported by a separate argument. According to several scholars (Collins 
2024; Onea, Kobayashi & Wurmbrand this issue; Ramchand this issue), 
LLMs – or more precisely, ANNs – do not qualify as linguistic theories, 
since they are universal function approximators (Hornik, Stinchcombe 
& White 1989), that is, they can simulate Turing-equivalent compu-
tations. In my opinion, this is a risky argument: by the same logic, 
one could also criticize phrase structure grammar (Chomsky 1957), 
since unconstrained rewriting rules yield Turing-equivalent compu-
tational power. Much of Chomsky’s early work focused on identify-
ing the relevant constraints that limit the domain of computation to 
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what is necessary for capturing core linguistic phenomena. There is 
now a broad consensus that mild context-sensitivity (Shieber 1985) is 
likely necessary to capture most relevant linguistic properties. If cer-
tain scholars are correct, this also applies to ANNs, with the perhaps 
unsurprising conclusion that Recurrent Neural Networks (RNNs) – due 
to their inherent recursive mechanisms – are better suited to captur-
ing truly infinite recursion than transformers (Delétang et al. 2022). 
For years, Chomsky’s hierarchy has served as a foundational tool for 
researchers introducing new grammatical frameworks, allowing them 
to demonstrate equivalence with existing formalisms within the mildly 
context-sensitive domain (Butt this issue; Graf this issue). The rationale 
was that, since we have efficient algorithms (with polynomial time 
complexity) for recognition and generation within this domain, we can 
be confident that our grammatical formalism is both computable and 
sufficiently rich and efficient. In fact, some scholars have attempted to 
show that, by applying different constraints to various ANN architec-
tures, it is possible to obtain models with different computational pow-
ers that align with levels of Chomsky’s hierarchy (Delétang et al. 2022) 
or express them in terms of circuits complexity (Merrill, Sabharwal & 
Smith 2022). From this perspective, Baroni’s argument (Baroni 2023) 
is entirely reasonable: ANNs define a space of possible grammars, and 
it might be a matter of architectural constraints to determine the rel-
evant boundaries within that space. 

2. The Lack of Formalization (LoF) Justification

As many have noted, the paper focused exclusively on Minimalism 
as the most recent iteration of the generative enterprise, and my cri-
tiques – specifically concerning ‘personal Minimalism’ – are confined 
to that framework. Other grammatical frameworks are arguably in a 
stronger position with respect to formalization, including LFG (Butt this 
issue), HPSG, and TAG, among others. Additionally, emerging approach-
es appear promising in this regard (Ginsburg & Fong 2019; Graf this 
issue; Stabler 2013), particularly given the ability to capture the ‘gradu-
al’ dimension of relevant linguistic data (Butt this issue). 

The vast majority of responses share the view of language as a 
‘computational system’ (Fong this issue) that can be fully formalized. 
While this is a trivial consequence of adopting any explicit computation-
al model, it does not imply that every linguistic intuition can – or should 
– be formally specified from the outset. 
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I agree with Hao in this respect: “formal vagueness and data 
idealization can enhance a reader’s feeling of understanding, and in 
turn, increase a theory’s perceived explanatory power.” (Hao this issue: 
109). I am also well aware of the intricacies that led Graf (this issue), 
Haspelmath (this issue) and Stabler (this issue) to critically examine and 
reformulate some of my positions in order to articulate a more produc-
tive and attainable challenge for linguistic theorizing. Without going 
into the details of their alternative proposals, I would like to address 
just two fundamental points: The first is the risk of subordinating theory 
to data – a concern captured by the ‘dataism’ (Ramchand this issue) and 
‘benchmarkification’ issues (Graf this issue), §2.1. The second point is 
related to the lack of technical expertise needed to adequately address 
the problem of formalization, §2.2. 

2.1. Dataism and Benchmarkification
In response to a question about Popper’s influence (Popper 1934) 

on his work,10 Chomsky emphasized the importance of determining what 
constitutes relevant data for linguistic theorizing: A data fragment that 
elucidates our cognitive faculty is not something that can be obtained 
through random or extensive data collection, but rather through a 
direct challenge of a theoretical assumption. On the same page, Rizzi 
emphasizes the fundamental right to exclude certain data points from 
the observational domain (Rizzi this issue) precisely with the intent of 
removing what Stabler (this issue) calls the ‘dust under the lens’. This is 
the ‘dataism’ threat, in other terms (Ramchand this issue). I fully endorse 
this perspective, which I consider both legitimate and necessary. It is, 
however, important to acknowledge that if a theory fragment F1, which 
accounts for a verified generalization G1, is inconsistent with a another 
theory fragment F2, which accounts for a separate verified generalization 
G2 – and neither F1 nor F2 can derive the generalization covered by the 
other fragment – then both should be set aside in favor of another theo-
ry fragment Fx that accounts for both G1 and G2. Such a fragment should 
be considered more adequate, as it eliminates part of the ‘dust under the 
lens,’ or, from a more critical and possibly radical perspective, uncovers 
the ‘dust under the carpet.’ Clarifying this basic point was the purpose 
of my (possibly unfortunate) example in the target paper, where I dis-
cussed modularity by illustrating the sensitivity of extraposition to quan-
tifier raising (Guéron & May 1984). Specifically, if a theory fragment F1 
(e.g. optional quantifier raising) is assumed to operate within one encap-
sulated module external to core syntax (e.g. LF), but must also affect the 
output of another distinct encapsulated module external to core syntax 
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(e.g. PF), as predicted by theory fragment F2, then F1 is inconsistent with 
F2 – assuming a strictly modular T-model architecture, in which the only 
point of contact between the two external modules is mediated through 
core syntax.

Importantly, while there is little doubt that ‘eliminative reduction-
ism’ is an unproductive approach (Rizzi this issue), it remains crucial to 
recognize that a more constructive form of ‘reductionism’ (e.g. replacing 
F1 and F2 with a suitable FX) is essential for eliminating unnecessary or 
inconsistent theoretical machinery, as sponsored by the notion of ‘perfec-
tion’ in Minimalist terms. This includes the removal of mechanisms that 
overgenerate and require constraints imposed by multiple theory frag-
ments, which are not mutually consistent. In this sense, I am increasingly 
convinced that a shared set of critical contrasts – on which linguists might 
broadly agree – constitutes our ‘Hilbert’s list for syntax’ or, even better, 
the empirical foundation that any theory aiming at both ‘descriptive’ and 
‘explanatory adequacy’ must address. We might call this a ‘benchmark,’ 
or simply refer to it as textbook linguistic examples. As noted in many 
responses, and as emphasized in the target paper, all items included in 
widely used benchmarks such as SyntaxGym and BLiMP are drawn from 
generative linguistics publications. It is, frankly, somewhat disconcerting 
to encounter so-called ‘theoretical solutions’ that overlook empirical evi-
dence discussed as early as the 1970s and 1980s.

As Graf (this issue) observes, ‘benchmarkification’ may have seri-
ous unintended consequences. On one hand, it can foster the so-called 
Matthew Effect, whereby more popular theories receive increasing sup-
port, monopolizing attention and resources at the expense of less widely 
endorsed alternatives. On the other hand, it may lead to a narrow focus 
on accuracy, as seen in parsing evaluation, where systems that perform 
well on high-frequency structures are favored – while low-frequency 
phenomena, which often serve as the core test bed for theoretical 
insights, are neglected (Fong this issue).

However, not all challenges are alike, and we risk missing a valua-
ble opportunity for productive engagement if we exclude ourselves from 
novel initiatives such as the BabyLM Challenge.11 It is true that adapting 
a model to perform on specific benchmarks can be very time-consuming. 
It is also true that many issues raised by current benchmarks may not 
align with the priorities of different research programs (Graf this issue). 
However, without shared priorities and a common ground for compara-
ble predictions, ‘personal Minimalism’ risks perpetuating the fragmen-
tation of research efforts. This fragmentation hinders the formation of 
a critical mass of researchers who could otherwise pursue alternative 
hypotheses within a shared evaluative framework. Ultimately, this also 
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means missing the broader ‘social challenge’ and confining the field to 
clever but ‘incommensurable’ opinions (Hao this issue). 

Small research communities must have the opportunity to demon-
strate the value of their intuitions on a FAIR (Findability, Accessibility, 
Interoperability, and Reuse) ground (Wilkinson et al. 2016). I fully endorse 
Zamparelli’s (this issue) position in this regard: an open-source approach, 
designed to promote shared responsibility, will be vital for the future of 
generative linguistics and will help mitigate the risk of parochialism and 
theoretical incommensurability, possibly addressing both standardization 
(Zamparelli this issue) and categorical generalizations within a broader 
typological scope (Butt this issue; Haspelmath this issue; Wiltschko this 
issue). Without such an effort – essential for updating the “early simplistic 
version of UG” (Ramchand this issue) –, Haspelmath’s (this issue) concern 
that, within the generative field, speculative ideas get promoted over sci-
entifically grounded ones is likely to remain a pervasive perception.

2.2. Lack of Technical Skills and the Necessity of Mutual Support
Many argued that generative linguists often lack the technical skills 

necessary to implement their models (Ginsburg this issue). At the same 
time, there is growing recognition of the need for mutual collabora-
tion across disciplines (Ramchand this issue; Rizzi this issue; Stabler this 
issue; Zamparelli this issue). Since linguistic theories lie at the core of any 
meaningful benchmark designed to evaluate a model’s or theory’s cover-
age – or ‘performance,’ in computational terms – interdisciplinary teams 
will be essential. Teams that crucially include scholars capable of trans-
lating promising linguistic intuitions into algorithmic proposals that can 
be integrated into sound theoretical frameworks. 

Implementing specific linguistic intuitions – priors, or inductive 
biases (Goyal & Bengio 2022) in machine learning terms – can offer val-
uable support for testing competing theories. Despite differing opinions 
on various technical aspects, we share a robust methodological founda-
tion for addressing standardization challenges (Zamparelli this issue), 
which continues to ensure that the generative enterprise remains intel-
lectually engaging under any well-defined formulation (Butt this issue). 
It is worth noting, however, that many model architectures and training 
datasets are now openly accessible (see, for example, the Hugging Face 
platform). Once again, there is little justification for ignoring how a lin-
guistic intuition might be integrated into these openly available compu-
tational models through effective interdisciplinary collaborations.
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3. Divergent Goals: Embracing the Cognitive Stance

An impressive comparison of learning efficiency in machine learning 
versus human learning is presented in Fong (this issue). This comparison 
highlights that our modest 20watt brain outperforms megawatt-consuming 
computational clusters in learning from limited data sets. It serves as a 
reminder that, while the goal of generative linguistics is to model how 
the linguistic faculty represents and processes linguistic input, LLMs are 
designed to perform downstream tasks such as machine translation (MT) or 
natural language understanding (NLU). Computational linguists developing 
LLMs often pursue the legitimate goal of improving performance on specific 
benchmarks for specific tasks (Papineni et al. 2001), frequently disregarding 
basic linguistic facts. I agree that, from the perspective of formal linguists, 
this can be seen as a frustrating and reductive objective, offering little or no 
return in terms of linguistic theorizing (Fong this issue; Ginsburg this issue).

It is also widely agreed that generative linguists adopt a ‘cogni-
tive stance’ (Onea, Kobayashi, & Wurmbrand this issue; Rizzi this issue; 
Wiltschko this issue). It is, however, in the interest of linguists to demon-
strate that, for certain tasks, incorporating specific linguistic intuitions can 
offer significant advantages – for example, in terms of efficiency, where 
low-resource models can be built with negligible drops in performance. 
Explanation – understood in the sense discussed in §1 – remains the cen-
tral goal of generative linguistics. However, it is difficult not to be drawn 
to alternative objectives, such as identifying optimal architectures for 
processing specific linguistic properties (Lan et al. 2022). The notion of 
a ‘perfect system’ that has guided minimalist hypotheses (Chomsky et al. 
2023: 55) must also contend with so-called ‘third factors’ – those related 
to computational efficiency – and invites further exploration of concrete 
cases involving interface conditions (Butt this issue).12

From the perspective of mutual support, one key role of generative 
linguistics is to identify confounds in test sets. For instance Kodner et al. 
(2023: 8) noted that BLiMP (Warstadt et al. 2020) contains significant 
shortcomings that may allow models to perform well on the benchmark 
without engaging in the kind of structural inference expected of humans 
(Graf this issue; Onea, Kobayashi & Wurmbrand this issue). This is true; how-
ever, on the one hand, we can construct better minimal pairs by relying 
on more complex grammars instead of linear patterns (Bressan et al. 2025; 
Lan, Chemla & Katzir 2024). On the other hand, we expect that inferring 
dependencies from linear patterns requires more parameters than doing so 
from hierarchical ones. In this case, the definition of ‘Descriptive Adequacy’ 
(Chesi this issue: 10) serves as an important safeguard, as it favors the most 
parameter-economical theory.
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4. A Reconciliatory Perspective

Like many respondents (Stabler this issue), I am inclined to view disa-
greement and argumentation as signs of vitality within the field. Apparent 
inconsistencies may signal forthcoming paradigmatic shifts (Wiltschko this 
issue), suggesting that numerous promising directions are likely to emerge 
in the near future. If experimental, computational, and formal linguists 
join forces – under a unificational and open-source rather than elimina-
tive reductionist perspective – many disagreements may be reframed as 
dialectical tensions, while other critical issues may be more productively 
addressed. We should remember that if “the singular purpose of genera-
tive linguistics [remains] to explain language to generativists” (Hao this 
issue: 108), then the widespread skepticism expressed by neighboring 
approaches will ultimately be justified (Haspelmath this issue).

Since non-trivial structural priors are embedded in any machine 
learning architecture (Baroni 2023; Goyal & Bengio 2022; Hao this 
issue), we can begin to meaningfully compare architectural assumptions 
and pose more substantive questions from a linguistic perspective. For 
instance, are there architectural specificities that specifically favor lan-
guage acquisition over other cognitive functions? Is there a single algo-
rithm that is demonstrably more efficient than others under certain learn-
ing circumstances? Returning to Chomsky’s opening lecture at IUSS in 
2012, by endorsing a computational or experimental perspective we need 
not revert to the ‘mechanical philosophy’ or ‘empiricism’ but simply adjust 
our expectations of ‘intelligibility’ in favor of greater theoretical consist-
ency in terms of both measurable descriptive and explanatory adequacy.

I remain convinced that generative linguists will continue to devel-
op theories inductively, deriving them from a relatively small set of 
observations and taking fruitful advantage of small-scale computational 
simulations – ultimately aiming to describe core principles within more 
consistent and solid frameworks. This is not the end of generative lin-
guistics, but rather a timely and constructive theoretical reorientation.

Abbreviations

ANN = Artificial Neural Network; LAD = Language Acquisition 
Device; LLMs = Large Language Models; LoE = Lack of Explanation; 
LoF = Lack of Formalization; MDL = Minimum Description Length.
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Notes

1	  An alternative perspective bears on the notion of ‘representational convergence’ 
(Huh et al. 2024): despite differences in architecture, training regimens, and data 
modalities, models addressing complex problems tend to converge on remarkably 
similar representations of data points. While this line of inquiry likely requires more 
rigorous linguistic investigation – the ‘color’ experiment, for instance, is very limited 
– the hypotheses proposed to explain convergence are nonetheless compelling. These 
include the ‘simplicity bias’, ‘multitask scaling’, and ‘capacity’ hypotheses, which 
might explain why larger models are more likely to converge than smaller ones. 
2	  In his reply to Quine’s work (Quine 1960), Chomsky explicitly criticized the 
reference to a ‘genuine explanation’ when it was invoked to support the internally 
inconsistent stance of behaviorism (Chomsky 1968, note 11).
3	  Here again, Graf identifies a logical counterargument (see §2.1): infinitely many 
contrasts could, in principle, be included in this respect. This is true, but only if we 
overlook the fact that each relevant contrast must target a specific assumption that 
differentiates two competing theories. Infinitely many contrasts would be required 
only if there were infinitely many theories making distinct predictions about con-
trasts that cannot be dismissed as mere ‘data dust’. However, such a scenario would 
make language acquisition ‘in the limit’ (Gold 1967) logically impossible.
4	  See Lillicrap et al. (2020) for a broader perspective.
5	  A gate is a simple mathematical operation that combines one or more inputs into 
a single output.
6	  Once the network has been trained, various analytical techniques (such as 
Principal Component Analysis, Elman 1990) can be used to investigate which types 
of features are encoded in the embeddings.
7	  I would also include the ‘tokenization’ step in this readily criticizable standard 
pipeline (Fusco et al. 2024).
8	  This is not the only possible approach. One might instead adopt a bottom-up 
perspective, in which LLMs are probed to infer their more-or-less categorical internal 
representations (Baroni 2022; Zamparelli this issue).
9	  I.e., we created a vector of size double than the original word embedding vector, 
concatenating the first word embedding with the second, then we squeezed this long 
vector to its original embedding size using a sigmoid transformation.
10	  <www.youtube.com/watch?v=-xerglwYdkE>.
11	  In the last 2024 Challenge, among the 29 paper accepted for the proceedings, just 
two mentioned some generative approach (Hu et al. 2024).
12	  A curious paradox that might arise, for instance, concerns ‘linearization’: even 
if we could hypothetically use telepathy to communicate (Chomsky 1995: 221), this 
would not significantly accelerate our exchanges nor eliminate the need to chunk lin-
guistic information. This limitation stems from the ‘incrementality bottleneck’, which 
arises because the same portion of our finite ‘linguistic organ’  – however it is struc-
tured – must be reused to process incoming linguistic input that each time saturates 
our maximal capacity (this is known as the ‘Telepathy Paradox’, Chesi forthcoming).
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