

A conclusive remark on linguistic theorizing and language modeling

Cristiano Chesi

NeTS-IUSS Pavia, Italy <cristiano.chesi@iusspavia.it>

Considering the proliferation of responses to Piantadosi's original paper and the ongoing debate sparked by this special issue of the *Italian Journal of Linguistics*, it is clear that the discussion has touched a raw nerve in linguistic theorizing.

In the original target paper (Chesi *this issue*), I illustrated three prototypical (and, in many respects, extreme) positions – the computational, theoretical, and experimental perspectives – without explicitly endorsing any of them. Instead, I attempted to highlight what I believe are the key weaknesses of each of these prototypical stances, ultimately concluding that formal (i.e. 'generative') linguistics – more specifically, Minimalism, my theoretical comfort zone – must adopt practices and tools that are common in both computational and experimental fields.

As noted by most respondents, the title and some of the more extreme statements were intended as mild provocations to draw attention to core issues affecting linguistic theorizing. My position – somehow obscured behind the 'three-body problem' – is that any relevant scientific progress is driven by theoretical insight, not by trawling using experimental or computational methods that are cost-inefficient, energy-intensive, and ultimately unsustainable. Moreover, in full agreement with most of the replies, I believe that the success of certain large language models (LLMs), which are based on specific architectural assumptions, does not constitute a refutation of the generative paradigm. On the contrary, it strongly supports several key intuitions that have emerged within the generative linguistic tradition (Rizzi *this issue*). However, a concrete problem of 'incommensurability' arises (Hao *this issue*), as differing methodologies and specialized jargon (Butt *this issue*) often result in circular, unresolved discussions.

Before turning to the core of my final remark, let me first clarify a widespread confusion found in many of the critiques of Piantadosi's position that 'LLMs express Theories'. A general attitude in the critical literature toward this statement reflects a criticism oriented towards LLM models, rather than a critique of model architecture. The difference is substantial, as no generative linguist would ever conflate an

adult's actual grammar with the Language Acquisition Device (LAD) that enabled the individual to attain a mature state of linguistic competence. Exactly in the same way, LLMs express something very similar to adults'-like mature competence. I believe the parallel between the LAD and the network architecture used to train the language model is fundamental for understanding in what sense LLMs might indeed meaningfully express theories. From this perspective (Baroni 2023), network architectures can be seen as potential implementations of structural intuitions (or 'inductive biases', Goyal & Bengio 2022) and deserve far more respect than they are typically afforded by prominent generative linguists, who reductively criticize LLMs without seriously addressing the architectural and training-regimen factors that enabled the development of these models. Fortunately, some of the more substantive critiques of the 'LLMs express theories' position are included in the replies (e.g. Onea *et al. this issue*), and we should take this opportunity to present well-grounded perspectives on the matter.

Several important points have been raised in the replies, which, in the spirit of constructive and productive dialogue, I will attempt to summarize in three arguments that may help readers navigate the range of perspectives. Those are:

1. Lack of Explanation (LoE) argument: LLMs generate predictions that are not grounded in intelligible or consistent theories or hypotheses, raising concerns about their explanatory value.
2. Lack of Formalization (LoF) justification: While intuitions must eventually be precisely formulated, preliminary ideas can still significantly advance research before being fully formalized and coherently integrated into a theoretical framework. Moreover, theoretical disagreement often signals vitality and the ongoing evolution of a paradigm.
3. Divergent Goals (Goal) argument: Generative linguistics is committed to a cognitive perspective, whereas LLMs are primarily commercial tools developed to address computational downstream tasks.

I will briefly address each of these points in the following sections.

1. The Lack of Explanation (LoE) Argument

Almost all replies concur that 'simulation' is not equivalent to 'explanation'. LLMs effectively mimic linguistic production but (§1.1), although they may operate within the same computational domain (i.e. achieve observational adequacy), the level of description they provide is fundamentally disconnected from the one required to account for the

human linguistic faculty (Ginsburg *this issue*). Moreover, the mechanisms by which LLMs generate language are largely unintelligible, which precludes them from being considered theories in the strict sense (Ginsburg *this issue*; Onea, Kobayashi & Wurmbrand *this issue*; Rizzi *this issue*). In addition (§1.2), the architectures underlying LLMs often disregard basic grammatical intuitions, particularly structural-dependency constraints that are central to generative theory (Fong *this issue*; Ginsburg *this issue*; Ramchand *this issue*). These two points deserve further elaboration.

1.1. On Intelligibility: From the Computational Level to the Algorithmic Level

In the target paper, I made a careful effort to articulate all three levels of adequacy in a manner that is both measurable and comparable. While it is tautological that a model capable of generating any sort of grammatical sentences to which it has never been exposed must be considered ‘observationally adequate’ with respect to language L , the absence of explicit ‘rules’ at certain levels does not entail the absence of an intelligible deductive apparatus at another level. For this reason, I decided to provide a definition of Descriptive Adequacy that simply measures the theory size and puts in background the notion of ‘intelligibility’ (Rizzi *this issue*). While we all implicitly agree on the fact that a theory is useful and elegant if it is simple and understandable in each of its deductive steps, much debate has arisen from the intuition that this ‘simplicity’ and ‘understandability’ might not be formulable at certain high levels, but only at lower ones. In the history of science, it is clear how the scope of ‘intelligibility’ has been reduced – from Galileo’s Scientific Revolution, to Chomsky’s Cognitive Revolution (Chomsky 2012), and more recently, to contemporary causal accounts framed in terms of ‘functional intelligibility’ (Cao & Yamins 2024). Returning to the connectionist discussion, ‘linguistic complexity’ was often regarded as an emergent property, with the only simple and intelligible level being that of the lowest artificial neural network (ANN) units and connections (Rumelhart, McClelland & PDP Research Group 1986) – the algorithmic level. According to the Minimalist framework, simplicity must be described at the level of abstract structure-building operations – the computational level. This difference in levels of analysis often leads to misunderstanding, as it involves the comparison of two fundamentally ‘incommensurable’ intuitions (Hao *this issue*) unless linking hypotheses are explicitly formulated. I am firmly convinced that all experiments conducted since the early works of Rumelhart, McClelland, Hinton, and colleagues – particularly those addressing core linguistic problems such

as English past tense acquisition (Rumelhart & McClelland 1986) – have yielded meaningful results only when specific architectural solutions were adopted. For instance, the successful modeling of past tense formation required a specific phonetic encoding of the input (Wickelphones, Wickelgren 1969) paired with a particular ANN architecture: a pattern associator network (McClelland & Rumelhart 1991). Despite certain naivities in the early experiments – such as inconsistencies in training regimens and learning trends interpretation – subsequent research continued and began to explicitly address ‘cognitive plausibility,’ understood as the implementation of specific architectural constraints designed to enhance the performance of these models (Kirov & Cotterell 2018).¹

In this spirit, the notion of ‘(genuine) explanation’ – often invoked without providing measurable criteria – appears to be overused in recent generative papers (Chomsky *et al.* 2023: XX). As Chomsky admitted (Chomsky 1968b), this is a rather slippery concept and a further source of potential ‘incommensurability’ (Hao *this issue*).²

Intuitively, I agree with all the respondents who have highlighted that notions such as C-command possess explanatory power (Rizzi *this issue*). However, if we aim to measure this ‘explanatory power’, the only viable approach is to compare the ‘simplicity’ (Descriptive Adequacy) and ‘efficiency’ (Explanatory Adequacy) of a theoretical model by assessing how the implementation of such constraints functions within a fully developed theory. For instance, C-command can be formalized algorithmically as a derivational constraint that applies at each Merge operation, or alternatively, it can be implemented as a representational filter applied to a structural fragment before or after Spell-Out. I do not believe these two approaches will prove equivalent – neither in terms of theory size (‘simplicity’ or Descriptive Adequacy), nor in terms of effective acquisitional constraints (‘efficiency’ or Explanatory Adequacy).

With regard to the notion of ‘theory size’ it is worth noting that Chomsky began engaging with a related concept of simplicity in his early work (as briefly mentioned by Haspelmath *this issue*), and more recently revisited the issue from a critical standpoint (Chomsky 2021a). In this context, the example he offers is illuminating, though arguably in the opposite direction from what he intends: rather than supporting the claim that ‘size should not matter,’ it may highlight the relevance of theoretical economy.

Briefly, Chomsky (2021a: 7) proposes two Context-Free Grammars, G1 and G2 as illustrated in (1). These grammars are identical in size, having the same number of rules and symbols. He argues, however, that only G1 provides a ‘genuine explanation’ by capturing the optionality of

the element B (an adjunct, such as in the phrase: [_Y read] [_W the book] [_B in the library])

(1) G1 = {X → YWB, X → YW}
G2 = {X → BWY, X → YW}

Indeed, under even a basic implementation of the Minimum Description Length (MDL) intuitions – using a simple size-based metric – we can already predict the superiority of G1 over G2. This is because G1 is ‘compressible’, as YW is a shared prefix of the rewritten part, whereas G2 lacks such redundancy. As a result, G1 can be encoded in a more compact form (G1 = {X → YW(B)}), aligning with the criterion of superior ‘descriptive adequacy’ (Chesi *this issue*: 10). From this perspective, the MDL objective subsumes the incommensurable notion of ‘genuine explanation’ in a quantifiable manner.

Graf (Graf *this issue*) is the only contributor in the replies who seriously challenges the assumptions underlying the MDL framework. He criticizes MDL metrics, particularly in cases where the ‘corpus cost’ – used as a proxy for the computational domain to approximate observational adequacy – makes the ‘grammar cost’ negligible (Ermolaeva 2023). This is a concrete risk that can be mitigated only by adopting a ‘rationalist’, rather than ‘empiricist’, approach – as previously argued (Chesi *this issue*: 18). We do not need ‘a bigger corpus’ to demonstrate that a theory is observationally and descriptively more adequate; a few additional contrasts that selectively challenge specific theoretical assumptions are sufficient.³ As Marantz (2019: 8) puts it, “puzzles are counterexamples to predictive linguistic theories that arise in the absence of an alternative theory that predicted them.” All remaining data can, at least provisionally, be treated as ‘data dust’ – data that, while not immediately relevant, may gain significance in light of future theoretical developments (Wiltschko *this issue*). Continuing with another illuminating claim by Marantz (2019), as cited in Onea *et al.* (*this issue*): “Linguists predict data they don’t have, the body of empirical generalizations uncovered by the methodology grows year by year, and alternative accounts of phenomena are in fact pitted against each other, with THE LOSERS NO LONGER VIABLE [emphasis added]”. I would fully endorse Marantz’s claim, and I sincerely hope he is correct. However, I am compelled to observe that various blatantly incorrect generalizations continue to be propagated from one peer-reviewed paper to another, often without contributing any clear theoretical advancement (Butt *this issue*).

Unfortunately, none of the respondents explicitly addresses the (speculative) notion of ‘data dust.’ Stabler engages with a related issue, rephrasing the problem of ‘dust under the carpet’ as a matter of ‘dust on the lenses’ (Stabler *this issue*: 159). However one chooses to frame it, certain confounding data that fail to align with any coherent hypothesis must be set aside. Temporarily disregarding such data allows linguists to concentrate on promising contrasts (Rizzi *this issue*) – unless, of course, those data are systematically organized and thereby transformed into linguistic puzzles, in the sense articulated by Marantz (2019).

Generally, it holds for any set of linguistic data that the most efficient theory – the one capable of predicting all grammatical sentences – will also be the one that most effectively and precisely compresses the reference corpus. However, we are not seeking a lossless, zip-like compression algorithm (Katz 1986). Our theory should not preserve irrelevant details such as the exact wordings and orderings of individual sentences. Instead, we require a lossy algorithm – one that discards a substantial amount of information while retaining the ability to generate and recognize only grammatical sentences. To be clear, our interest in LLMs should not stem from their ability to pass the Turing Test, but rather from the architectural and training assumptions that enable them to consistently generate grammatical sentences and make human-like judgments about grammaticality through minimal pair comparisons.

1.2. On Grammatical Intuitions

It is true that most architectures do not incorporate relevant linguistic considerations into their design (but see §1.1 and note 1). Notably, the widely adopted attention-based mechanism – fostered by the (possibly ‘social,’ in the sense of Hao *this issue*) success of the un-peer-reviewed paper by Vaswani *et al.* (2017) – bears little resemblance to ‘attention’ as understood in psycholinguistics, nor does it reflect relevant linguistic structural constraints (Fong *this issue*; Onea, Kobayashi & Wurmbrand *this issue*). Similarly, the training algorithms appear implausible in many respects (Ramchand *this issue*).⁴

However, this does not imply that grammatical principles cannot be integrated into a network architecture, thereby constraining the computational flow according to specific structural intuitions (Sartran *et al.* 2022). To clarify this point, consider modifying a specific gate within a computational graph to implement the operation Merge.⁵ This may appear complex, but it is essentially what we do when fully formalizing a structure-building operation such as Merge. Consider the first Merge example discussed in the target paper, here repeated:

(1) $\text{Merge}(\text{scolds}, \text{Bill}) = \{\text{scolds}, \text{Bill}\}$

Any ANN architecture simply encodes $\langle \text{scolds} \rangle$ and $\langle \text{Bill} \rangle$ (or the sub-tokens from which they are composed) as vectors – i.e. sequences of numbers representing abstract features relevant to the intended computation (Butt *this issue*; Onea, Kobayashi & Wurmbrand *this issue*). These vectorial representations – commonly referred to as ‘word embeddings’ in computational jargon – may allocate specific components to encode a word’s categorial status, relevant agreement features (e.g. person and number), and selectional properties. For instance, one component might represent external argument selection, another internal argument selection, with additional components potentially encoding further categorical or semantic specifications. In the end, ‘Bill’ and ‘scolds’ will be represented by vectors such as $\langle 1, 0, \dots, 1 \rangle$ or $\langle 1, 0, \dots, 0 \rangle$, which can be approximately interpreted at an intelligible level as $\langle V, N, \dots, \text{person, number, ...} \rangle$ as in (2):⁶

(2) $\begin{array}{ll} \text{scolds} = & \langle 1, 0, \dots, 0, 0, 1, & 1, \dots \rangle \\ \text{Bill} = & \langle 0, 1, \dots, 0, 0, 0, & 0, \dots \rangle \\ & \langle V, N, \dots, \text{pers, numb, arg_external,} & \text{arg_internal, ...} \rangle \end{array}$

While I fully agree with the point made by Onea *et al.* (*this issue*) – particularly with regard to the opaque manner in which ‘vectorialization’ is implemented as a necessary preliminary step for compressing lexical input and reducing the number of early parameters to be tuned⁷ – the fundamental question a generative linguist might ask is how Merge might operate on these representations. For the purposes of this inquiry, we can reasonably assume that a meaningful vectorial representation is manually provided for each relevant lexical item, thereby bypassing the preliminary parameters associated with vectorialization or word embedding. This approach makes explicit the hypotheses about what should be represented within the ‘black box’ (Ginsburg *this issue*; Onea, Kobayashi & Wurmbrand *this issue*; Zamparelli *this issue*) and what should instead be subject to learning.⁸ For example, in the BabyLM 2024 Challenge, we evaluated various mathematical hypotheses – such as vector summation, concatenation followed by a sigmoid transformation, dot product, and point-wise multiplication – and ultimately found that concatenation combined with a sigmoid transformation⁹ best implemented a specific version of a unification procedure, a well-known concept within the HPSG framework (Pollard & Sag 1994), yielding the most accurate predictions (Chesi *et al.* 2024). The results of our experiments barely reached the baseline on the BLiMP benchmark; however,

we demonstrated that modifying the gating mechanism in this way induces some degree of linguistic coherence in the behavior of our Small Language Model, which was trained on a naturalistic, child-directed corpus. Specifically, the trained model consistently selected either the grammatical or the ungrammatical item over 80% of the time across groups of minimal pairs representing specific linguistic phenomena. It is important to highlight that an overall accuracy around 50% may reflect either entirely random performance – for instance, when the model achieves approximately 50% accuracy across groups of phenomena that differ only in irrelevant lexical variation within a given syntactic pattern – or a coherent linguistic behavior, such as 90% accuracy on half of the phenomena and only 10% on the other half (consistently selecting the ungrammatical alternative). Overall, both models perform at approximately 50% accuracy; however, only the second model exhibits a sufficient linguistic consistency. I believe that these kinds of ‘technical solutions’ offer effective linking hypotheses between the computational and algorithmic levels, as envisioned by many (Butt *this issue*; Ramchand *this issue*), potentially bridging the gap between linguistic theorizing and language modeling in a productive way – likely aligning with the expectations for small-scale experiments proposed by Onea, Kobayashi & Wurmbrand (*this issue*). It is important to remember that, to conclude that our theory is explanatorily adequate, we ask more than simple implementations of structure-building operations: the model must also be able to bootstrap from Primary Linguistic Data (PLD) and consistently exhibit adult-like performance after reasonable exposure to such input. Without seriously engaging with the acquisitional perspective – in generative linguistic terms, or ‘training’ in computational terms – a theory can, at best, be considered “descriptively adequate”.

1.3. On Unboundedness

The lack of ‘grammatical intuitions’ in LLMs has also been supported by a separate argument. According to several scholars (Collins 2024; Onea, Kobayashi & Wurmbrand *this issue*; Ramchand *this issue*), LLMs – or more precisely, ANNs – do not qualify as linguistic theories, since they are universal function approximators (Hornik, Stinchcombe & White 1989), that is, they can simulate Turing-equivalent computations. In my opinion, this is a risky argument: by the same logic, one could also criticize phrase structure grammar (Chomsky 1957), since unconstrained rewriting rules yield Turing-equivalent computational power. Much of Chomsky’s early work focused on identifying the relevant constraints that limit the domain of computation to

what is necessary for capturing core linguistic phenomena. There is now a broad consensus that mild context-sensitivity (Shieber 1985) is likely necessary to capture most relevant linguistic properties. If certain scholars are correct, this also applies to ANNs, with the perhaps unsurprising conclusion that Recurrent Neural Networks (RNNs) – due to their inherent recursive mechanisms – are better suited to capturing truly infinite recursion than transformers (Delétang *et al.* 2022). For years, Chomsky’s hierarchy has served as a foundational tool for researchers introducing new grammatical frameworks, allowing them to demonstrate equivalence with existing formalisms within the mildly context-sensitive domain (Butt *this issue*; Graf *this issue*). The rationale was that, since we have efficient algorithms (with polynomial time complexity) for recognition and generation within this domain, we can be confident that our grammatical formalism is both computable and sufficiently rich and efficient. In fact, some scholars have attempted to show that, by applying different constraints to various ANN architectures, it is possible to obtain models with different computational powers that align with levels of Chomsky’s hierarchy (Delétang *et al.* 2022) or express them in terms of circuits complexity (Merrill, Sabharwal & Smith 2022). From this perspective, Baroni’s argument (Baroni 2023) is entirely reasonable: ANNs define a space of possible grammars, and it might be a matter of architectural constraints to determine the relevant boundaries within that space.

2. The Lack of Formalization (LoF) Justification

As many have noted, the paper focused exclusively on Minimalism as the most recent iteration of the generative enterprise, and my critiques – specifically concerning ‘personal Minimalism’ – are confined to that framework. Other grammatical frameworks are arguably in a stronger position with respect to formalization, including LFG (Butt *this issue*), HPSG, and TAG, among others. Additionally, emerging approaches appear promising in this regard (Ginsburg & Fong 2019; Graf *this issue*; Stabler 2013), particularly given the ability to capture the ‘gradual’ dimension of relevant linguistic data (Butt *this issue*).

The vast majority of responses share the view of language as a ‘computational system’ (Fong *this issue*) that can be fully formalized. While this is a trivial consequence of adopting any explicit computational model, it does not imply that every linguistic intuition can – or should – be formally specified from the outset.

I agree with Hao in this respect: “formal vagueness and data idealization can enhance a reader’s feeling of understanding, and in turn, increase a theory’s perceived explanatory power.” (Hao *this issue*: 109). I am also well aware of the intricacies that led Graf (*this issue*), Haspelmath (*this issue*) and Stabler (*this issue*) to critically examine and reformulate some of my positions in order to articulate a more productive and attainable challenge for linguistic theorizing. Without going into the details of their alternative proposals, I would like to address just two fundamental points: The first is the risk of subordinating theory to data – a concern captured by the ‘dataism’ (Ramchand *this issue*) and ‘benchmarkification’ issues (Graf *this issue*), §2.1. The second point is related to the lack of technical expertise needed to adequately address the problem of formalization, §2.2.

2.1. Dataism and Benchmarkification

In response to a question about Popper’s influence (Popper 1934) on his work,¹⁰ Chomsky emphasized the importance of determining what constitutes relevant data for linguistic theorizing: A data fragment that elucidates our cognitive faculty is not something that can be obtained through random or extensive data collection, but rather through a direct challenge of a theoretical assumption. On the same page, Rizzi emphasizes the fundamental right to exclude certain data points from the observational domain (Rizzi *this issue*) precisely with the intent of removing what Stabler (*this issue*) calls the ‘dust under the lens’. This is the ‘dataism’ threat, in other terms (Ramchand *this issue*). I fully endorse this perspective, which I consider both legitimate and necessary. It is, however, important to acknowledge that if a theory fragment F_1 , which accounts for a verified generalization G_1 , is inconsistent with another theory fragment F_2 , which accounts for a separate verified generalization G_2 – and neither F_1 nor F_2 can derive the generalization covered by the other fragment – then both should be set aside in favor of another theory fragment F_x that accounts for both G_1 and G_2 . Such a fragment should be considered more adequate, as it eliminates part of the ‘dust under the lens,’ or, from a more critical and possibly radical perspective, uncovers the ‘dust under the carpet.’ Clarifying this basic point was the purpose of my (possibly unfortunate) example in the target paper, where I discussed modularity by illustrating the sensitivity of extraposition to quantifier raising (Guéron & May 1984). Specifically, if a theory fragment F_1 (e.g. optional quantifier raising) is assumed to operate within one encapsulated module external to core syntax (e.g. LF), but must also affect the output of another distinct encapsulated module external to core syntax

(e.g. PF), as predicted by theory fragment F_2 , then F_1 is inconsistent with F_2 – assuming a strictly modular T-model architecture, in which the only point of contact between the two external modules is mediated through core syntax.

Importantly, while there is little doubt that ‘eliminative reductionism’ is an unproductive approach (Rizzi *this issue*), it remains crucial to recognize that a more constructive form of ‘reductionism’ (e.g. replacing F_1 and F_2 with a suitable F_X) is essential for eliminating unnecessary or inconsistent theoretical machinery, as sponsored by the notion of ‘perfection’ in Minimalist terms. This includes the removal of mechanisms that overgenerate and require constraints imposed by multiple theory fragments, which are not mutually consistent. In this sense, I am increasingly convinced that a shared set of critical contrasts – on which linguists might broadly agree – constitutes our ‘Hilbert’s list for syntax’ or, even better, the empirical foundation that any theory aiming at both ‘descriptive’ and ‘explanatory adequacy’ must address. We might call this a ‘benchmark,’ or simply refer to it as textbook linguistic examples. As noted in many responses, and as emphasized in the target paper, all items included in widely used benchmarks such as SyntaxGym and BLiMP are drawn from generative linguistics publications. It is, frankly, somewhat disconcerting to encounter so-called ‘theoretical solutions’ that overlook empirical evidence discussed as early as the 1970s and 1980s.

As Graf (*this issue*) observes, ‘benchmarkification’ may have serious unintended consequences. On one hand, it can foster the so-called Matthew Effect, whereby more popular theories receive increasing support, monopolizing attention and resources at the expense of less widely endorsed alternatives. On the other hand, it may lead to a narrow focus on accuracy, as seen in parsing evaluation, where systems that perform well on high-frequency structures are favored – while low-frequency phenomena, which often serve as the core test bed for theoretical insights, are neglected (Fong *this issue*).

However, not all challenges are alike, and we risk missing a valuable opportunity for productive engagement if we exclude ourselves from novel initiatives such as the BabyLM Challenge.¹¹ It is true that adapting a model to perform on specific benchmarks can be very time-consuming. It is also true that many issues raised by current benchmarks may not align with the priorities of different research programs (Graf *this issue*). However, without shared priorities and a common ground for comparable predictions, ‘personal Minimalism’ risks perpetuating the fragmentation of research efforts. This fragmentation hinders the formation of a critical mass of researchers who could otherwise pursue alternative hypotheses within a shared evaluative framework. Ultimately, this also

means missing the broader ‘social challenge’ and confining the field to clever but ‘incommensurable’ opinions (Hao *this issue*).

Small research communities must have the opportunity to demonstrate the value of their intuitions on a FAIR (Findability, Accessibility, Interoperability, and Reuse) ground (Wilkinson *et al.* 2016). I fully endorse Zamparelli’s (*this issue*) position in this regard: an open-source approach, designed to promote shared responsibility, will be vital for the future of generative linguistics and will help mitigate the risk of parochialism and theoretical incommensurability, possibly addressing both standardization (Zamparelli *this issue*) and categorical generalizations within a broader typological scope (Butt *this issue*; Haspelmath *this issue*; Wiltschko *this issue*). Without such an effort – essential for updating the “early simplistic version of UG” (Ramchand *this issue*) –, Haspelmath’s (*this issue*) concern that, within the generative field, speculative ideas get promoted over scientifically grounded ones is likely to remain a pervasive perception.

2.2. Lack of Technical Skills and the Necessity of Mutual Support

Many argued that generative linguists often lack the technical skills necessary to implement their models (Ginsburg *this issue*). At the same time, there is growing recognition of the need for mutual collaboration across disciplines (Ramchand *this issue*; Rizzi *this issue*; Stabler *this issue*; Zamparelli *this issue*). Since linguistic theories lie at the core of any meaningful benchmark designed to evaluate a model’s or theory’s coverage – or ‘performance,’ in computational terms – interdisciplinary teams will be essential. Teams that crucially include scholars capable of translating promising linguistic intuitions into algorithmic proposals that can be integrated into sound theoretical frameworks.

Implementing specific linguistic intuitions – priors, or inductive biases (Goyal & Bengio 2022) in machine learning terms – can offer valuable support for testing competing theories. Despite differing opinions on various technical aspects, we share a robust methodological foundation for addressing standardization challenges (Zamparelli *this issue*), which continues to ensure that the generative enterprise remains intellectually engaging under any well-defined formulation (Butt *this issue*). It is worth noting, however, that many model architectures and training datasets are now openly accessible (see, for example, the Hugging Face platform). Once again, there is little justification for ignoring how a linguistic intuition might be integrated into these openly available computational models through effective interdisciplinary collaborations.

3. Divergent Goals: Embracing the Cognitive Stance

An impressive comparison of learning efficiency in machine learning versus human learning is presented in Fong (*this issue*). This comparison highlights that our modest 20watt brain outperforms megawatt-consuming computational clusters in learning from limited data sets. It serves as a reminder that, while the goal of generative linguistics is to model how the linguistic faculty represents and processes linguistic input, LLMs are designed to perform downstream tasks such as machine translation (MT) or natural language understanding (NLU). Computational linguists developing LLMs often pursue the legitimate goal of improving performance on specific benchmarks for specific tasks (Papineni *et al.* 2001), frequently disregarding basic linguistic facts. I agree that, from the perspective of formal linguists, this can be seen as a frustrating and reductive objective, offering little or no return in terms of linguistic theorizing (Fong *this issue*; Ginsburg *this issue*).

It is also widely agreed that generative linguists adopt a ‘cognitive stance’ (Onea, Kobayashi, & Wurmbrand *this issue*; Rizzi *this issue*; Wiltschko *this issue*). It is, however, in the interest of linguists to demonstrate that, for certain tasks, incorporating specific linguistic intuitions can offer significant advantages – for example, in terms of efficiency, where low-resource models can be built with negligible drops in performance. Explanation – understood in the sense discussed in §1 – remains the central goal of generative linguistics. However, it is difficult not to be drawn to alternative objectives, such as identifying optimal architectures for processing specific linguistic properties (Lan *et al.* 2022). The notion of a ‘perfect system’ that has guided minimalist hypotheses (Chomsky *et al.* 2023: 55) must also contend with so-called ‘third factors’ – those related to computational efficiency – and invites further exploration of concrete cases involving interface conditions (Butt *this issue*).¹²

From the perspective of mutual support, one key role of generative linguistics is to identify confounds in test sets. For instance Kodner *et al.* (2023: 8) noted that BLiMP (Warstadt *et al.* 2020) contains significant shortcomings that may allow models to perform well on the benchmark without engaging in the kind of structural inference expected of humans (Graf *this issue*; Onea, Kobayashi & Wurmbrand *this issue*). This is true; however, on the one hand, we can construct better minimal pairs by relying on more complex grammars instead of linear patterns (Bressan *et al.* 2025; Lan, Chemla & Katzir 2024). On the other hand, we expect that inferring dependencies from linear patterns requires more parameters than doing so from hierarchical ones. In this case, the definition of ‘Descriptive Adequacy’ (Chesi *this issue*: 10) serves as an important safeguard, as it favors the most parameter-economical theory.

4. A Reconciliatory Perspective

Like many respondents (Stabler *this issue*), I am inclined to view disagreement and argumentation as signs of vitality within the field. Apparent inconsistencies may signal forthcoming paradigmatic shifts (Wiltschko *this issue*), suggesting that numerous promising directions are likely to emerge in the near future. If experimental, computational, and formal linguists join forces – under a unificationist and open-source rather than eliminative reductionist perspective – many disagreements may be reframed as dialectical tensions, while other critical issues may be more productively addressed. We should remember that if “the singular purpose of generative linguistics [remains] to explain language to generativists” (Hao *this issue*: 108), then the widespread skepticism expressed by neighboring approaches will ultimately be justified (Haspelmath *this issue*).

Since non-trivial structural priors are embedded in any machine learning architecture (Baroni 2023; Goyal & Bengio 2022; Hao *this issue*), we can begin to meaningfully compare architectural assumptions and pose more substantive questions from a linguistic perspective. For instance, are there architectural specificities that specifically favor language acquisition over other cognitive functions? Is there a single algorithm that is demonstrably more efficient than others under certain learning circumstances? Returning to Chomsky’s opening lecture at IUSS in 2012, by endorsing a computational or experimental perspective we need not revert to the ‘mechanical philosophy’ or ‘empiricism’ but simply adjust our expectations of ‘intelligibility’ in favor of greater theoretical consistency in terms of both measurable descriptive and explanatory adequacy.

I remain convinced that generative linguists will continue to develop theories inductively, deriving them from a relatively small set of observations and taking fruitful advantage of small-scale computational simulations – ultimately aiming to describe core principles within more consistent and solid frameworks. This is NOT the end of generative linguistics, but rather a timely and constructive theoretical reorientation.

Abbreviations

ANN = Artificial Neural Network; LAD = Language Acquisition Device; LLMs = Large Language Models; LoE = Lack of Explanation; LoF = Lack of Formalization; MDL = Minimum Description Length.

Notes

¹ An alternative perspective bears on the notion of ‘representational convergence’ (Huh *et al.* 2024): despite differences in architecture, training regimens, and data modalities, models addressing complex problems tend to converge on remarkably similar representations of data points. While this line of inquiry likely requires more rigorous linguistic investigation – the ‘color’ experiment, for instance, is very limited – the hypotheses proposed to explain convergence are nonetheless compelling. These include the ‘simplicity bias’, ‘multitask scaling’, and ‘capacity’ hypotheses, which might explain why larger models are more likely to converge than smaller ones.

² In his reply to Quine’s work (Quine 1960), Chomsky explicitly criticized the reference to a ‘genuine explanation’ when it was invoked to support the internally inconsistent stance of behaviorism (Chomsky 1968, note 11).

³ Here again, Graf identifies a logical counterargument (see §2.1): infinitely many contrasts could, in principle, be included in this respect. This is true, but only if we overlook the fact that each relevant contrast must target a specific assumption that differentiates two competing theories. Infinitely many contrasts would be required only if there were infinitely many theories making distinct predictions about contrasts that cannot be dismissed as mere ‘data dust’. However, such a scenario would make language acquisition ‘in the limit’ (Gold 1967) logically impossible.

⁴ See Lillicrap *et al.* (2020) for a broader perspective.

⁵ A gate is a simple mathematical operation that combines one or more inputs into a single output.

⁶ Once the network has been trained, various analytical techniques (such as Principal Component Analysis, Elman 1990) can be used to investigate which types of features are encoded in the embeddings.

⁷ I would also include the ‘tokenization’ step in this readily criticizable standard pipeline (Fusco *et al.* 2024).

⁸ This is not the only possible approach. One might instead adopt a bottom-up perspective, in which LLMs are probed to infer their more-or-less categorical internal representations (Baroni 2022; Zamparelli *this issue*).

⁹ I.e., we created a vector of size double than the original word embedding vector, concatenating the first word embedding with the second, then we squeezed this long vector to its original embedding size using a sigmoid transformation.

¹⁰ <www.youtube.com/watch?v=-xerglwYdkE>.

¹¹ In the last 2024 Challenge, among the 29 paper accepted for the proceedings, just two mentioned some generative approach (Hu *et al.* 2024).

¹² A curious paradox that might arise, for instance, concerns ‘linearization’: even if we could hypothetically use telepathy to communicate (Chomsky 1995: 221), this would not significantly accelerate our exchanges nor eliminate the need to chunk linguistic information. This limitation stems from the ‘incrementality bottleneck’, which arises because the same portion of our finite ‘linguistic organ’ – however it is structured – must be reused to process incoming linguistic input that each time saturates our maximal capacity (this is known as the ‘Telepathy Paradox’, Chesi *forthcoming*).

Bibliographical References

See the unified list at the end of this issue.

Unified Bibliographical References

Abels, Klaus & Neeleman, Ad 2012. Linear Asymmetries and the LCA: Linear Asymmetries and the LCA. *Syntax* 15,1. 25-74. <doi.org/10.1111/j.1467-9612.2011.00163.x>.

Abney, Steven 1996. Statistical methods. In Klavans, Judith L. & Resnik, Philip (eds.), *The Balancing Act: Combining Symbolic and Statistical Approaches to Language*. Cambridge, MA: MIT Press. 1-26.

Acemoglu, Daron 2024. *The Simple Macroeconomics of AI*. Working paper 32487. Cambridge, MA: National Bureau of Economic Research. <DOI: 10.3386/w32487>.

Achinstein, Peter 1985. *The Nature of Explanation*. Oxford: Oxford University Press.

Aksënova, Alëna & Deshmukh, Sanket 2018. Formal restrictions on multiple tiers. In *Proceedings of the society for computation in linguistics (SCiL) 2018*. 64-73.

Aksënova, Alëna; Graf, Thomas & Moradi, Sedigheh 2016. Morphotactics as tier-based strictly local dependencies. In *Proceedings of the 14th SIGMORPHON workshop on computational research in phonetics, phonology, and morphology*. 121-130.

Aksënova, Alëna; Rawski, Jonathan; Graf, Thomas & Heinz, Jeffrey 2024. The computational nature of hamony patterns. In Ritter, Nancy & van der Hulst, Harry (eds.), *Handbook of vowel harmony*. Oxford, UK: Oxford University Press. 437-451.

Allott, Nicholas; Kush, Dave & Dillon, Brian 2021. Sentence processing and syntactic theory. In Lohndal, T. & Rey, G. (eds.), *A Companion to Chomsky*. Wiley Publishing. 305-324.

Ambridge, Ben & Blything, Liam 2024. Large language models are better than theoretical linguists at theoretical linguistics. *Theoretical Linguistics* 50,1-2. 33-48.

Anderson, Chris 2008. The end of theory: The data deluge makes the scientific method obsolete. *Wired* 23 June.

Askell, Amanda; Bai, Yuntao; Chen, Anna; Drain, Dawn; Ganguli, Deep; Henighan, Tom; Jones, Andy; Joseph, Nicholas; Mann, Ben; DasSarma, Nova *et al.* 2021. A general language assistant as a laboratory for alignment. <arXiv:2112.00861>.

Ayers, John W. *et al.* 2023. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. *JAMA Internal Medicine*. 589-596. <DOI: 10.1001/jamaintern-med.2023.1838>.

Baker, Mark 2001. *The atoms of language* (1st ed.). New York: Basic Books.

Baker, Mark 2009. Formal generative typology. In Heine, Bernd & Narrog, Heiko (eds.), *The Oxford Handbook of Linguistic Analysis*. 1st edition. Oxford: Oxford University Press. 285-312.

Baker, Mark 2013. On agreement and its relationship to case: Some generative ideas and results. *Lingua* 130. 14-32.

Baker, Mark 2021. On Chomsky's legacy in the study of linguistic diversity. In Allott, Nicholas; Lohndal, Terje & Rey, George (eds.), *A companion to Chomsky*. Hoboken, NJ: Wiley Blackwell. 158-171. <doi:10.1002/9781119598732.ch10>.

Baker, Mark & McCloskey, Jim 2007. On the relationship of typology to theoretical syntax. *Linguistic Typology* 11. 285-296.

Bai, Yuntao; Kadavath, Saurav; Kundu, Sandipan; Askell, Amanda; Kernion, Jackson; Jones, Andy; Chen, Anna; Goldie, Anna; Mirhoseini, Azalia; McKinnon, Cameron *et al.* 2022. Constitutional AI: Harmlessness from AI feedback. <arXiv:2212.08073>.

Baltin, Mark 2017. Extrapolosition. In Everaert, Martin & van Riemsdijk, Henk C. (eds.), *The Wiley Blackwell Companion to Syntax, Second Edition*. Hoboken, NJ: John Wiley & Sons, Inc. 1-33. <doi.org/10.1002/9781118358733.wbsyncom111>.

Barile, Joseph *et al.* 2024. Diagnostic accuracy of a Large Language Model in pediatric case studies. *JAMA Pediatrics*. 313-315. <DOI: 10.1001/jamapediatrics.2023.5750>.

Baroni, Marco 2022. On the proper role of linguistically oriented deep net analysis in linguistic theorizing. In Lappin, Shalom & Bernardy, Jean-Philippe (eds.), *Algebraic structures in natural language*. Boca Raton: CRC Press, Taylor & Francis. 1-16. *ICoRR* <arxiv.org/abs/2106.08694> (2021).

Barton, G. Edward; Berwick, Robert C. & Ristad, Eric Sven 1987. *Computational complexity and natural language*. Cambridge, MA: MIT Press.

Bates, Elizabeth; Elman, Jeffrey L.; Johnson, Mark H.; Karmiloff-Smith, Annette; Parisi, Domenico & Plunkett, Kim 1996. *Rethinking Innateness: A Connectionist Perspective on Development*. Cambridge, MA: MIT Press. <doi.org/10.7551/mitpress/5929.001.0001>.

Beghelli, Filippo & Stowell, Tim 1997. Distributivity and Negation: The Syntax of Each and Every. In Szabolcsi, Anna (ed.), *Ways of Scope Taking* (Vol. 65). Dordrecht: Springer Netherlands. 71-107. <doi.org/10.1007/978-94-011-5814-5_3>.

Beier, Eleonora J. & Ferreira, Fernanda 2022. Replication of Cutler, Anne & Fodor, Jerry A. 1979, Semantic focus and sentence comprehension. *Journal of Memory and Language* 126. <doi.org/10.1016/j.jml.2022.104339>.

beim Graben, Peter & Potthast, Roland 2014. Universal neural field computation. In Coombes, Stephen; beim Graben, Peter; Potthast, Roland & Wright, James (eds.), *Neural Fields*. Berlin: Springer. <doi.org/10.1007/978-3-642-54593-1_11>.

Belkin, Mikhail; Hsu, Daniel; Ma, Siyuan & Mandal, Soumik 2019. Reconciling modern machine-learning practice and the classical bias-variance trade-off. *Proceedings of the National Academy of Sciences* 116. 15849-15854. <doi.org/10.1073/pnas.1903070116>.

Bellelli, Adriana 2004. *Structures and Beyond: The Cartography of Syntactic Structures, Volume 3*. Oxford, UK: Oxford University Press.

Bender, Emily M.; Gebru, Timnit; McMillan-Major, Angelina & Shmitchell, Shmargaret 2021. On the dangers of stochastic parrots: Can language models be too big? New York, NY: Association for Computing Machinery. 610-623. <DOI: 10.1145/3442188.3445922>.

Bender, Emily M. & Hanna, Alex 2025. *The AI Con: How to Fight Big Tech's Hype and Create the Future We Want*. Harper Collins.

Bender, Emily & Koller, Alexander 2020. Climbing toward NLU: On meaning, form, and understanding in the age of data. In *Proceedings of the 58th annual meeting of the Association for Computational Linguistics*. 5185-5198. <www.aclweb.org/anthology/2020.acl-main.463>.

Benesty, Michaël 2023. *Unexpected description of GPT4 architecture*. <x.com/pommedeterre33/status/1671263789914677248>.

Bengio, Yoshua; Hinton, Geoffrey; Yao, Andrew; Song, Dawn; Abbeel, Pieter; Darrell, Trevor; Harari, Yuval Noah; Zhang, Ya-Qin; Xue, Lan; Shalev-Shwartz, Shai; Hadfield, Gillian; Clune, Jeff; Maharaj, Tegan; Hutter, Frank; Baydin, Atilim Gunes; McIlraith, Sheila; Gao, Qiqi; Acharya, Ashwin; Krueger, David; Dragan, Anca; Torr, Philip; Russell, Stuart; Kahneman, Daniel; Brauner, Jan & Mindermaann, Soren 2024. Managing extreme AI risks amid rapid progress. *Science* 384. 842-845. <doi.org/10.1126/science.adn0117>.

Berwick, Robert C. & Chomsky, Noam 2016. *Why only us: Language and evolution*. Cambridge, MA: MIT Press.

Berwick, Robert C.; Pietroski, Paul; Yankama, Beracah & Chomsky, Noam 2011. Poverty of the stimulus revisited. *Cognitive Science* 35,7. 1207-1242. <DOI: 10.1111/j.1551-6709.2011.01189.x>.

Bever, Thomas G. 1970. The cognitive basis for linguistic structures. *Cognition and the Development of Language*.

Bever, Thomas G. & Townsend, David J. 2001. Some Sentences on Our Consciousness of Sentences. In Dupoux, Emmanuel (ed.), *Language, Brain, and Cognitive Development: Essays in Honor of Jacques Mehler*. Cambridge, MA: MIT Press. 143-155.

Bianchi, Valentina & Chesi, Cristiano 2014. Subject islands, reconstruction, and the flow of the computation. *Linguistic Inquiry*. 525-569. <doi.org/10.1162/LING_a_00166>.

Bjorkman, Bronwyn M. 2017. Singular *they* and the syntactic representation of gender in English. *Glossa: A Journal of General Linguistics* 2,1. <DOI: 10.5334/gjgl.374>.

Blank, Idan 2016. *The Functional Architecture of Language Comprehension Mechanisms: Fundamental Principles Revealed with fMRI*. PhD dissertation. MIT. <doi.org/1721.1/7582>.

Bloom, Paul A. & Fischler, Ira 1980. Completion norms for 329 sentence contexts. *Memory & Cognition* 8,6. 631-642. <doi.org/10.3758/BF03213783>.

Bobaljik, Jonathan D. 2012. *Universals in comparative morphology: Suppletion, superlatives, and the structure of words*. Cambridge, MA: MIT Press.

Bobaljik, Jonathan D. & Wurmbrand, Susi 2008. Case in GB / Minimalism. In Malchukov, Andrej & Spencer, Andrew (eds.), *The Handbook of Case*. New York: Oxford University Press. 44-58.

Bobrow, Daniel G.; Cheslow, Bob; Condoravdi, Cleo; Karttunen, Lauri; Holloway King, Tracy; Nairn, Rowan; de Paiva, Valeria; Price, Charlotte & Zaenen, Annie 2007. PARC's bridge and question answering system. In *Proceedings of the Grammar Engineering Across Frameworks Workshop (GEFA 2007)*. CSLI Publications Online. 46-66.

Bock, J. Kathryn 1986. Meaning, sound, and syntax: Lexical priming in sentence production. *Journal of Experimental Psychology: Learning, Memory, and Cognition* 12,4. 575-586. <doi.org/10.1037/0278-7393.12.4.575>.

Boeckx, Cedric & Leivada, Evelina 2013. Entangled parametric hierarchies: Problems for an overspecified Universal Grammar. *PLOS ONE* 8,9. <doi:10.1371/journal.pone.0072357>.

Bögel, Tina; Freiseis, Mila; Hill, Romi; Wambach, Daniel & Zhao, Tianyi 2024. Language redundancy and acoustic salience: An account in LFG. In Butt, Miriam; Findlay, Jamie A. & Toivonen, Ida (eds.), *The proceedings of the Ifg'24 conference*. 90-115.

Bögel, Tina & Zhao, Tianyi 2025. From speech signal to syntactic structure: A computational implementation. *Journal of Language Modeling* 13,1. 1-42.

Borer, Hagit 2005. *Structuring sense: In name only*. Oxford: Oxford University Press.

Bošković, Željko 2005. On the locality of left branch extraction and the structure of NP. *Studia Linguistica* 59. 1-45.

Bošković, Željko 2016. Introduction. *The Linguistic Review* 33,1. 1-16. <doi.org/10.1515/tlr-2015-0012>.

Bowman, Samuel R.; Hyun, Jeeyoon; Perez, Ethan; Chen, Edwin; Pettit, Craig; Heiner, Scott; Lukošiūtė, Kamilė; Askell, Amanda; Jones, Andy; Chen, Anna *et al.* 2022. Measuring progress on scalable oversight for large language models. <arXiv:2211.03540>.

Brayton, Flint; Laubach, Thomas & Reifschneider, David 2014. *The FRB/US Model: A Tool for Macroeconomic Policy Analysis*. Washington, DC: Board of Governors of the Federal Reserve System. <DOI: 10.17016/2380-7172.0012>.

Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming & Hale, John T. 2016. Abstract linguistic structure correlates with temporal activity during naturalistic comprehension. *Brain and Language* 157-158. 81-94. <doi.org/10.1016/j.bandl.2016.04.008>.

Bresnan, Joan 1982. Control and complementation. *Linguistic Inquiry* 13,3. 343-434.

Bresnan, Joan 2016. Linguistics: The Garden and the Bush. *Computational Linguistics* 42,4. 599-617. <doi.org/10.1162/COLI a 00260>.

Bresnan, Joan; Cueni, Anna; Nikitina, Tatiana & Baayen, R. Harald 2007. Predicting the dative alternation. In Bouma, Gerlof; Krämer, Irene & Zwarts, Joost (eds.), *Cognitive Foundations of Interpretation*. Amsterdam: Royal Netherlands Academy of Science. 69-94.

Bressan, Veronica; Piccini Bianchessi, Maria Letizia; Fusco, Achille; Rossi, Sarah; Neri, Sofia & Chesi, Cristiano 2025. BLiMP-IT. <doi.org/10.17605/OSF.IO/2JKFN>.

Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, C.; ... Amodei, D. 2020. Language Models are Few-Shot Learners. In Larochelle, Hugo *et al.* (eds.), *Advances in Neural Information Processing Systems 33 (NeurIPS 2020) Proceedings*. <arxiv.org/abs/2005.14165>.

Brunato, Dominique; Chesi, Cristiano; Dell'Orletta, Felice; Montemagni, Simonetta; Venturi, Giulia & Zamparelli, Roberto 2020. AcCompl-it@ EVALITA2020: Overview of the acceptability & complexity evaluation task for Italian. *Proceedings of Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020), Online. CEUR. Org.*

Burness, Phillip; McMullin, Kevin & Chandlee, Jane 2021. Long-distance phonological processes as tier-based strictly local functions. *Glossa* 6. 1-37. <doi.org/10.16995/glossa.5780>.

Burness, Phillip; McMullin, Kevin & Nevins, Andrew 2024. Revisiting locality in vowel harmony. In Ritter, Nancy & van der Hulst, Harry (eds.), *Handbook of vowel harmony*. Oxford, UK: Oxford University Press. 269-290.

Butt, Miriam; Bögel, Tina; Zymla, Mark-Matthias & Mumtaz, Benazir 2024. Alternative questions in Urdu: from the speech signal to semantics. In Butt, Miriam; Findlay, Jamie & Toivonen, Ida (eds.), *Proceedings of the LFG'24 Conference*. Konstanz: PubliKon. 141-164. <lfg-proceedings.org/lfg/index.php/main/article/view/65/50>.

Butt, Miriam; Holloway King, Tracy; Niño, María-Eugenia & Segond, Frédérique 1999. *A Grammar Writer's Cookbook*. Stanford: CSLI Publications.

Butt, Miriam & Ramchand, Gillian 2005. Complex aspectual structure in Hindi/Urdu. In Ertishik-Shir, Nomi & Rappaport, Tova (eds.), *The Syntax of Aspect*. Oxford: Oxford University Press. 117-153.

Cahill, Aoife 2008. Treebank-based probabilistic phrase structure parsing. *Language and Linguistics Compass* 2,1. 36-58.

Cann, Ronnie; Kempson, Ruth & Marten, Lutz 2005. *The Dynamics of Language: An introduction*. Elsevier Academic Press.

Cao, Rosa & Yamins, Daniel 2024. Explanatory Models in Neuroscience, Part 2: Functional Intelligibility and the Contravariance Principle. *Cognitive Systems Research* 85. 101200. <doi.org/10.1016/j.cogsys.2023.101200>.

Carnie, Andrew 2013. *Syntax: A Generative Introduction, Third Edition*. Malden, MA: Wiley Blackwell.

Carnie, Andrew 2021. *Syntax: A Generative Introduction, Fourth Edition*. Malden, MA: Wiley Blackwell.

Cauchy, Augustin 1847. Méthode générale pour la résolution des systèmes d'équations simultanées. *Comptes rendus hebdomadaires des séances de l'Académie des sciences* 25. 536-538.

Cecchetti, Gabriele; Tomasini, Cedric A.; Herff, Steffen A. & Rohrmeier, Martin A. 2023. Interpreting rhythm as parsing. *Cognitive Science* 47. e13389. <doi.org/10.1111/cogs.13389>.

Chaitin, Gregory J. 1969. On the Simplicity and Speed of Programs for Computing Infinite Sets of Natural Numbers. *Journal of the ACM* 16,3. 407-422. <doi.org/10.1145/321526.321530>.

Chandlee, Jane 2014. Strictly local phonological processes. PhD dissertation. University of Delaware.

Chandlee, Jane 2017. Computational locality in morphological maps. *Morphology* 27. 599-641.

Chandlee, Jane 2022. Less is more: Reexamining assumptions through the narrow focus of subregularity. *Theoretical Linguistics* 48. 205-218.

Chandlee, Jane & Heinz, Jeffrey 2018. Strict locality and phonological maps. *Linguistic Inquiry* 49. 23-60.

Charchidi, Vincent J. 2024. Creative Minds Like Ours? Large Language Models and the Creative Aspect of Language Use. *Biolinguistics* 18. 1-31.

Charpentier, Lucas Georges Gabriel & Samuel, David 2023. Not all layers are equally as important: Every Layer Counts BERT. *Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning*. 210-224. <doi.org/10.18653/v1/2023.conll-babylm.20>.

Chen, Binglin; Lewis, Colleen M.; West, Matthew & Zilles, Craig 2024. Plagiarism in the age of Generative AI: Cheating method change and learning loss in an Intro to CS Course. In *L@S '24: Eleventh ACM Conference on Learning @ Scale, Atlanta GA USA*. New York, NY: ACM. 75-85. <DOI: [10.1145/3657604.3662046](https://doi.org/10.1145/3657604.3662046)>.

Chen, Tianlong; Frankle, Jonathan; Chang, Shiyu; Liu, Sijia; Zhang, Yang; Wang, Zhangyang & Carbin, Michael 2020. The lottery ticket hypothesis for pre-trained BERT networks. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F. & Lin, H. (eds.), *Advances in Neural Information Processing Systems 33 (NeurIPS 2020)*. Online: Curran Associates, Inc. 15834-15846.

Chen, Zhong & Hale, John T. 2010. Deforesting logical form. *Procs. Mathematics of Language*. Berlin: Springer. LNCS 6149. <doi.org/10.1007/978-3-642-14322-9_2>.

Cheng, Lisa L.-S.; Heycock, Caroline & Zamparelli, Roberto 2017. Two levels for definiteness. In Erlewine, M. Y. (ed.), *Proceedings of GLOW in Asia XI – Vol. 1. Volume 84 of MIT Working Papers in Linguistics*. MIT.

Cheng, Lisa L.-S. & Sybesma, Rint 1999. Bare and not-so-bare nouns and the

structure of NP. *Linguistic Inquiry* 30,4. 509-542.

Chesi, Cristiano 2007. An introduction to phase-based minimalist grammars: why move is top-down from left-to-right. In Moscati, V. (ed.), *STIL – Studies in Linguistics*, Volume 1. CISCL Press. 38-75.

Chesi, Cristiano 2021. Expectation-based Minimalist Grammars. <arxiv.org/abs/2109.13871>.

Chesi, Cristiano 2023. Parameters of cross-linguistic variation in expectation-based Minimalist Grammars (e-MGs). *Italian Journal of Computational Linguistics* 9,1. 21.

Chesi, Cristiano *forthcoming*. Linearization (as Part of Core Syntax). In Grohmann, Kleanthes & Leivada, Evelina (eds.), *Cambridge Handbook of Minimalism*. Cambridge (UK): Cambridge University Press. <ling.auf.net/lingbuzz/006689>.

Chesi, Cristiano; Barbini, Matilde; Bressan, Veronica; Neri, Sofia; Piccini Bianchessi, Maria Letizia; Sarah, Rossi & Sgrizzi, Tommaso 2024. Different Ways to Forget: Linguistic Gates in Recurrent Neural Networks. In *Proceedings of the BabyLM Challenge at the 28th Conference on Computational Natural Language Learning*.

Chesi, Cristiano & Bianchi, Valentina 2014. Subject islands, reconstruction, and the flow of the computation. *Linguistic Inquiry* 45,4. 525-569.

Chesi, Cristiano & Moro, Andrea 2015. The subtle dependency between Competence and Performance. *MIT Working Papers In Linguistics* 77. 33-46.

Chesi, Cristiano; Vespignani, Francesco & Zamparelli, Roberto *to appear*. Large language models under evaluation: An acceptability, complexity and coherence assessment in Italian. *Italian Journal of Computational Linguistics*.

Chierchia, Gennaro 1998. Reference to kinds across languages. *Natural Language Semantics* 6. 339-405.

Cho, Kyunghyun; van Merriënboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk, Holger & Bengio, Yoshua 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Moschitti, Alessandro; Pang, Bo & Daelemans, Walter (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing*. Doha, Qatar: Association for Computational Linguistics. 1724-1734. <[DOI: 10.3115/v1/D14-1179](https://doi.org/10.3115/v1/D14-1179)>.

Chomsky, Noam 1956. Three models for the description of language. *IEEE Transactions on Information Theory* 2,3. 113-124. <doi.org/10.1109/TIT.1956.1056813>.

Chomsky, Noam 1957. *Syntactic Structures*. Berlin: Mouton de Gruyter.

Chomsky, Noam 1959. A Review of B. F. Skinner's Verbal Behavior. *Language* 35,1. 26. <doi.org/10.2307/411334>.

Chomsky, Noam 1964. *Current Issues in Linguistic Theory*. Berlin: De Gruyter.

Chomsky, Noam 1965. *Aspects of the Theory of Syntax* (Vol. 11). Cambridge, MA: MIT Press.

Chomsky, Noam 1966. *Cartesian Linguistics: A Chapter in the History of Rationalist Thought*. New York, NY: Harper & Row.

Chomsky, Noam 1968. *Language and Mind*. New York, NY: Harcourt, Brace & World.

Chomsky, Noam 1968b. Quine's Empirical Assumptions. *Synthese* 19,1-2. 53-68. <doi.org/10.1007/bf00568049>.

Chomsky, Noam 1969. Quine's empirical assumptions. In Davidson, Donald & Hintikka, Jaakko (eds.), *Words and Objections: Essays on the Work of W.V. Quine*. Dordrecht, Netherlands: Springer Dordrecht. 53-68. <DOI: 10.1007/978-94-010-1709-1_5>.

Chomsky, Noam 1975. *Questions on Form and Interpretation*. Lisse: Peter de Ridder. <doi.org/10.1007/978-3-642-14322-9_2>.

Chomsky, Noam 1981. *Lectures on government and binding: The Pisa lectures*. Walter de Gruyter.

Chomsky, Noam 1986. *Knowledge of language: Its nature, origin, and use*. New York: Praeger.

Chomsky, Noam 1995. *The minimalist program*. Cambridge, MA: MIT Press.

Chomsky, Noam 1995b. Language and Nature. *Mind* 104 (413). 1-61.

Chomsky, Noam 2001. Derivation by phase. In Kenstowicz, Michael (ed.), *Ken Hale: A life in language*. Cambridge, MA: MIT Press. 1-52.

Chomsky, Noam A. 2004. *The generative enterprise revisited. Discussions with Riny Huybregts, Henk van Riemsdijk, Naoki Fukui and Mihoko Zushi*. De Gruyter Mouton.

Chomsky, Noam A. 2005. Three Factors in Language Design. *Linguistic Inquiry* 36,1. 1-22.

Chomsky, Noam 2008. On phases. In Freidin, Robert; Otero, Carlos P. & Zubizarreta, Maria Luisa (eds.), *Foundational issues in linguistic theory: Essays in Honor of Jean-Roger Vergnaud* (Vol. 45). Cambridge, MA: MIT Press. 133-166.

Chomsky, Noam 2012. Language and Limits of Understanding. <www.nets.iusspavia.it/dox/chomsky2012-LLU-IUSS_Pavia.pdf>.

Chomsky, Noam 2013. Problems of projection. *Lingua* 130. 33-49.

Chomsky, Noam 2015. Problems of projection: Extensions. In Di Domenico, Elisa; Hamann, Cornelia & Matteini, Simona (eds.), *Linguistik Aktuell/Linguistics Today* (Vol. 223). Amsterdam: John Benjamins. 1-16. <doi.org/10.1075/la.223.01cho>.

Chomsky, Noam 2021a. Simplicity and the form of grammars. *Journal of Language Modelling* 9,1. <doi.org/10.15398/jlm.v9i1.257>.

Chomsky, Noam 2021b. Minimalism: where are we now, and where can we hope to go. *Gengo Kenkyu* 160. 1-42.

Chomsky, Noam 2024. The Miracle Creed and SMT. In Greco, M. & Moccia, D. (eds.), *A Cartesian dream: A geometrical account of syntax: In honor of Andrea Moro*. Rivista di Grammatica Generativa / Research in Generative Grammar 17-40.

Chomsky, Noam & Lasnik, Howard 1977. Filters and Control. *Linguistic*

Inquiry 8,3. 425-504.

Chomsky, Noam; Roberts, Ian & Watumull, Jeffrey 2023. Noam Chomsky: The False Promise of ChatGPT. *New York Times* 8 March.

Chomsky, Noam; Seely, T. Daniel; Berwick, Robert C.; Fong, Sandiway; Huybregts, M. A. C.; Kitahara, Hisatsugu; McInnerney, Andrew & Sugimoto, Yushi 2023. *Merge and the Strong Minimalist Thesis* (1st ed.). Cambridge: Cambridge University Press. <doi.org/10.1017/9781009343244>.

Chowdhury, Shammur Absar & Zamparelli, Roberto 2018. RNN Simulations of Grammaticality Judgments on Long-distance Dependencies. *Proceedings of the 27th International Conference on Computational Linguistics*. 133-144. <aclanthology.org/C18-1012>.

Cinque, Guglielmo 1999. *Adverbs and functional heads: A cross-linguistic perspective*. Oxford, UK: Oxford University Press.

Cinque, Guglielmo 2002. *Functional Structure in DP and IP: The Cartography of Syntactic Structures, Volume 1*. Oxford, UK: Oxford University Press.

Cinque, Guglielmo 2005. Deriving Greenberg's Universal 20 and Its Exceptions. *Linguistic Inquiry* 36,3. 315-332. <doi.org/10.1162/0024389054396917>.

Cinque, Guglielmo & Rizzi, Luigi 2010. The Cartography of Syntactic Structures. In Heine, B. & Narrog, H. (eds.), *The Oxford Handbook of Linguistic Analysis*. Oxford / New York: Oxford University Press. 51-65.

Clark, Alexander & Lappin, Shalom 2010. Computational learning theory and language acquisition. *Philosophy of Linguistics*. 445-475.

Clark, Alexander & Lappin, Shalom 2011. *Linguistic Nativism and the Poverty of the Stimulus*. Chichester: Wiley-Blackwell.

Clifton, Charles Jr; Ferreira, Fernanda; Henderson, John M.; Inhoff, Albrecht W.; Liversedge, Simon P.; Reichle, Erik D. & Schotte, Elizabeth R. 2015. Eye movements in reading and information processing. *Journal of Memory and Language* 86. 1-19.

Collins, Chris; Kayne, Richard & Koopman, Hilda 2009. *Syntactic structures of the world's languages (SSWL)*. <terraling.com/groups/7>.

Collins, Chris & Stabler, Edward P. 2016. A Formalization of Minimalist Syntax. *Syntax* 19,1. 43-78. <doi.org/10.1111/synt.12117>.

Collins, Joe 2024. The simple reason LLMs are not scientific models (and what the alternative is for linguistics). <lingbuzz.net/lingbuzz/008026>.

Conneau, Alexis; Kruszewski, German; Lample, Guillaume; Barrault, Loïc & Baroni, Marco 2018. What you can cram into a single \$&#!#* vector: Probing sentence embeddings for linguistic properties. In Gurevych, Iryna & Miyao, Yusuke (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Melbourne, Australia: Association for Computational Linguistics. 2126-2136. <DOI: 10.18653/v1/P18-1198>.

Corbett, Greville G. 2010. Implicational hierarchies. In Song, Jae

Jong (ed.), *The Oxford Handbook of Linguistic Typology*. Oxford: Oxford University Press. 190-205. <doi.org/10.1093/oxfordhb/9780199281251.013.0011>.

Cottier, Ben; Rahman, Robi; Fattorini, Loredana; Maslej, Nestor; Besiroglu, Tamay & Owen, David 2025. The rising costs of training frontier AI models. <arXiv:2405.21015>.

Crain, Stephen & Nakayama, Mineharu 1987. Structure Dependence in Grammar Formation. *Language* 63,3. 522. <doi.org/10.2307/415004>.

Crain, Stephen & Thornton, Rosalind 2021. Universal grammar and language acquisition. In Allot, Nicholas; Lohndahl, Terje & Rey, Georges (eds.), *A Companion to Chomsky*. Wiley. <doi.org/10.1002/9781119598732.ch21>.

Crawford, Kate 2024. Generative AI's environmental costs are soaring – and mostly secret. *Nature* 626. 693. <DOI: 10.1038/d41586-024-00478-x>.

Crystal, David 2011. *Internet Linguistics: A Student Guide*. London: Routledge.

Cutler, Anne & Fodor, Jerry A. 1979. Semantic focus and sentence comprehension. *Cognition* 7. 49-59. <doi.org/10.1016/0010-0277(79)90010-6>.

Cybenko, George 1989 Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals and systems* 2,4. 303-314.

Dahl, Östen 2020. Morphological complexity and the minimum description length approach. In Arkadiev, Peter & Gardani, Francesco (eds.), *The complexities of morphology*. Oxford: Oxford University Press. 331-343.

D'Alessandro, Roberta 2019. The achievements of Generative Syntax: A time chart and some reflections. *Catalan Journal of Linguistics*. 7-26.

Dalrymple, Mary (ed.) 2023. *The Handbook of Lexical Functional Grammar: Empirically Oriented Theoretical Morphology and Syntax*. Berlin: Language Science Press. <10.5281/zenodo.10037797>.

Dalrymple, Mary; Gupta, Vineet; Lampert, John & Saraswat, Vijay 1999. Relating resource-based semantics to categorial semantics. In Dalrymple, Mary (ed.), *Semantics and syntax in Lexical Functional Grammar: The resource logic approach*. Language, Speech, and Communication. Cambridge, MA: MIT Press. 261-280.

Dalrymple, Mary; Patejuk, Agnieszka & Zymla, Mark-Matthias 2020. XLE + Glue – A new tool for integrating semantic analysis in XLE. In Butt, Miriam & Toivonen, Ida (eds.), *Proceedings of the LFG'20 Conference*. Stanford, CA: CSLI Publications. 89-108. <cslipublications.stanford.edu/LFG/2020/lfg2020-dpz.pdf>.

De Santo, Aniello 2019. Testing a Minimalist Grammar Parser on Italian Relative Clause Asymmetries. *Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics*. 93-104. <doi.org/10.18653/v1/W19-2911>.

De Santo, Aniello 2020. Structure and memory: A computational model of storage, gradience, and priming. PhD dissertation. Stony Brook University.

Deacon, Terence W. 1997. *The symbolic species: The co-evolution of language and the human brain*. Allen Lane: The Penguin Press.

Delétang, Grégoire; Ruoss, Anian; Grau-Moya, Jordi; Genewein, Tim; Wenliang, Li Kevin; Catt, Elliot; Cundy, Chris *et al.* 2022. Neural Networks and the Chomsky Hierarchy. <doi.org/10.48550/ARXIV.2207.02098>.

Demirci, Ozge; Hannane, Jonas & Zhu, Xinrong 2024. Who is AI replacing? The impact of Generative AI on online freelancing platforms. *SSRN Electronic Journal*. <DOI: 10.2139/ssrn.4991774>.

Demirdache, H.; Hornstein, N.; Lasnik, H.; May, R.; Rizzi, L. 2024. Structured Sentences and the Computational Theory of Mind: Roundtable. In *Festschrift for Howard Lasnik*. Cambridge: Cambridge University Press.

Dennett, Daniel C. 1978. Why you can't make a computer that feels pain. *Synthese* 38. 415-456.

Dentella, Vittoria; Günther, Fritz & Leivada, Evelina 2023. Systematic testing of three Language Models reveals low language accuracy, absence of response stability, and a yes-response bias. *Proceedings of the National Academy of Sciences* 120,51. e2309583120. <doi.org/10.1073/pnas.2309583120>.

Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton & Toutanova, Kristina 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Burstein, Jill; Doran, Christy & Solorio, Thamar (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. Vol. 1. Minneapolis, MN: Association for Computational Linguistics. 4171-4186. <DOI: 10.18653/v1/N19-1423>.

Dijkstra, Edsger W. 1982. *Selected Writings on Computing*. Berlin: Springer.

Dobson, James E. 2023. On reading and interpreting black box deep neural networks. *International Journal of Digital Humanities* 5. 431-449. <DOI: 10.1007/s42803-023-00075-w>.

Dryer, Matthew S. 2006. Descriptive theories, explanatory theories, and basic linguistic theory. In Ameka, Felix K.; Dench, Alan & Evans, Nicholas (eds.), *Catching language: The standing challenge of grammar writing*. Berlin: Mouton de Gruyter. 207-234. <www.acsu.buffalo.edu/~dryer/desc.expl.theories.pdf>.

Dryer, Matthew & Haspelmath, Martin 2022. *The World Atlas of Language Structures Online* (v2020.3) [dataset]. Zenodo. <doi.org/10.5281/ZENODO.7385533>.

Edinger, Harald 2022. Offensive ideas: structural realism, classical realism and Putin's war on Ukraine. *International Affairs* 98,6. 1873-1893. <DOI: 10.1093/ia/iiac217>.

Elman, Jeffrey L. 1990. Finding Structure in Time. *Cognitive Science* 14,2. 179-211. <doi.org/10.1207/s15516709cog1402_1>.

Elman, Jeffrey L. 1991. Distributed representations, simple recurrent net-

works, and grammatical structure. *Machine Learning* 7,2. 195-225. <DOI: 10.1023/A:1022699029236>.

Elman, Jeffrey L. 1993. Learning and development in neural networks: The importance of starting small. *Cognition* 48,1. 71-99. <doi.org/10.1016/0010-0277(93)90058-4>.

Engelfriet, Joost; Lilin, Eric & Maletti, Andreas 2009. Extended multi bottom-up tree transducers: Composition and decomposition. *Acta Informatica* 46. 561-590. <doi.org/10.1007/s00236-009-0105-8>.

Epstein, Samuel David; Groat, Erich M.; Kawashima, Ruriko & Kitahara, Hisatsugu (eds.) 1998. *A derivational approach to syntactic relations*. Oxford, UK: Oxford University Press.

Ermolaeva, Marina 2023. Evaluating syntactic proposals using Minimalist grammars and minimum description length. *Journal of Language Modelling* 11. 67-119. <doi.org/10.15398/jlm.v11i1.334>.

Espinal, Maria Teresa & Cyrino, Sonia 2022. A syntactically-driven approach to indefiniteness, specificity and antispecificity in Romance. *Journal of Linguistics* 58. 535-570.

Ettinger, Allyson 2020. What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. *Transactions of the Association for Computational Linguistics* 8. 34-48. <doi.org/10.1162/tacl_a_00298>.

Evans, Lyndon 2007. The Large Hadron Collider. *New Journal of Physics* 9,9. 335-335. <doi.org/10.1088/1367-2630/9/9/335>.

Evans, Nicholas & Levinson, Stephen C. 2009. The myth of language universals: Language diversity and its importance for cognitive science. *Behavioral and Brain Sciences* 32,5. 429-448. <DOI:10.1017/S0140525X0999094X>.

Evanson, Linnea; Lakretz, Yair & King, Jean-Rémi 2023. Language acquisition: do children and language models follow similar learning stages? <arXiv:2306.03586>.

Fazi, M. Beatrice 2021. Beyond human: Deep learning, explainability and representation. *Theory, Culture & Society* 38. 55-77.

Feyerabend, Paul K. 1962. Explanation, reduction, and empiricism. In Feigl, Herbert & Maxwell, Grover (eds.), *Scientific explanation, space, and time*. Vol. 3. Minneapolis, MN: University of Minnesota Press. 28-97.

Fisher, Cynthia 2002. The role of abstract syntactic knowledge in language acquisition: A reply to Tomasello (2000). *Cognition* 82. 259-278.

Fleck, Ludwik 1935. *Entstehung und Entwicklung einer wissenschaftlichen Tatsache: Einführung in die Lehre vom Denkstil und Denkkollektiv*. Basel, Switzerland: Benno Schwabe & Co.

Fodor, Janet Dean 1998. Unambiguous triggers. *Linguistic Inquiry* 29. 1-36.

Fodor, Jerry A. 1980. *The Language of Thought*. Harvard: Harvard University Press.

Fodor, Jerry A. 1983. *The modularity of mind: An essay on faculty psychology*. Cambridge, MA: MIT Press.

Fodor, Jerry A. 2010. *LOT 2: The Language of Thought Revisited*. Oxford, UK: Oxford University Press.

Fodor, Jerry A. & Bever, Thomas G. 1965. The psychological reality of linguistic segments. *Journal of Verbal Learning and Verbal Behavior* 4. 414-420. <doi.org/10.1016/s0022-5371(65)80081-0>.

Fong, Sandiway 1991. *Computational properties of principle-based grammatical theories*. PhD dissertation. MIT, Cambridge (MA).

Fong, Sandiway & Ginsburg, Jason 2012. Computation with doubling constituents: Pronouns and antecedents in Phase Theory. In Di Sciullo, Anna Maria (ed.), *Towards a Biolinguistic Understanding of Grammar: Essays on interfaces*. Amsterdam: John Benjamins. 303-338.

Fong, Sandiway & Ginsburg, Jason 2014. A new approach to tough-constructions. In Santana-LaBarge, Robert E (ed.), *Proceedings of the 31st West Coast Conference on Formal Linguistics (WCCFL 31)*. Somerville, MA: Cascadilla Proceedings Project. 180-188.

Fong, Sandiway & Ginsburg, Jason 2019. Towards a Minimalist Machine. In Berwick, Robert C. & Stabler, Edward P. (eds.), *Minimalist Parsing*. Oxford: Oxford University Press. 16-38.

Fong, Sandiway & Ginsburg, Jason 2023. On the computational modeling of English relative clauses. *Open Linguistics* 9. 1-35. <DOI: 10.1515/olip-2022-0246>.

Forster, Kenneth I.; Guerrera, Christine & Elliot, Lisa 2009. The maze task: Measuring forced incremental sentence processing time. *Behavior Research Methods* 41,1. 163-171. <doi.org/10.3758/BRM.41.1.163>.

Fox, Danny & Karzir, Roni 2024. Large Language Models and Theoretical Linguistics. *Theoretical Linguistics* 50. 71-76. <DOI: 10.1515/tl-2024-2005>.

Fox, Danny & Nissenbaum, Jon 1999. Extrapolation and scope: A case for overt QR. *Proceedings of the 18th West Coast Conference on Formal Linguistics* 18,2. 132-144.

Fox, Melvin J. & Skolnick, Betty P. 1975. *Language in Education: Problems and Prospects in Research and Teaching*. New York, NY: Ford Foundation.

Frampton, John & Gutmann, Sam 2002. Crash-Proof Syntax. In Epstein, Samuel David & Seely, T. Daniel (eds.), *Derivation and Explanation in the Minimalist Program* (1st ed.). Wiley. 90-105. <doi.org/10.1002/9780470755662.ch5>.

Frank, Anette; Holloway King, Tracy; Kuhn, Jonas & Maxwell, John T. III 2001. Optimality theory style constraint ranking in large-scale LFG grammars. In Sells, Peter (ed.), *Formal and Empirical Issues in Optimality Theory*. Stanford: CSLI Publications. 367-397.

Frank, Robert 1990. Licensing and tree adjoining grammar in government binding parsing. *28th Annual Meeting of the Association for Computational Linguistics*. 111-118.

Frank, Robert 2002. *Phrase structure composition and syntactic dependencies*. Cambridge, MA: MIT Press.

Frankle, Jonathan & Carbin, Michael 2019. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *ICLR 2019 Conference Track*. New Orleans, LA: OpenReview.

Friedmann, Naama; Belletti, Adriana & Rizzi, Luigi 2009. Relativized relatives: Types of intervention in the acquisition of A-bar dependencies. *Lingua* 119,1. 67-88.

Fusco, Achille; Barbini, Matilde; Piccini Bianchessi, Maria Letizia; Bressan, Veronica; Neri, Sofia; Rossi, Sarah; Sgrizzi, Tommaso & Chesi, Cristiano 2024. Recurrent Networks Are (Linguistically) Better? An Experiment on Small-LM Training on Child-Directed Speech in Italian. In *Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024)*. Aachen: CEUR.

Futrell, Richard; Gibson, Edward & Levy, Roger P. 2020. Lossy-Context Surprisal: An Information-Theoretic Model of Memory Effects in Sentence Processing. *Cognitive Science* 44,3. <doi.org/10.1111/cogs.12814>.

Futrell, Richard & Levy, Roger 2017. Noisy-context surprisal as a human sentence processing cost model. *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers*. 688-698.

Futrell, Richard; Wilcox, Ethan; Morita, Takashi; Qian, Peng; Ballesteros, Miguel & Levy, Roger 2019. Neural language models as psycholinguistic subjects: Representations of syntactic state. <[arXiv:1903.03260](https://arxiv.org/abs/1903.03260)>.

Gauthier, Jon; Hu, Jennifer; Wilcox, Ethan; Qian, Peng & Levy, Roger 2020. SyntaxGym: An online platform for targeted evaluation of language models. In Celikyilmaz, Asli & Wen, Tsung-Hsien (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations*. Online: Association for Computational Linguistics. 70-76. <DOI: 10.18653/v1/2020.acl-demos.10>.

Gehrke, Berit & McNally, Louise 2019. Idioms and the syntax/semantics interface of descriptive content vs. reference. *Linguistics* 57,4. 769-814. <[10.1515/ling-2019-0016](https://doi.org/10.1515/ling-2019-0016)>.

Gerth, Sabrina 2015. Memory limitations in sentence comprehension. A structure-based complexity metric of processing difficulty. PhD dissertation. University of Potsdam.

Gianollo, Chiara; Guardiano, Cristina & Longobardi, Giuseppe 2008. Three fundamental issues in parametric linguistics. In Biberauer, Theresa (ed.), *Linguistik Aktuell/Linguistics Today* (Vol. 132). Amsterdam: John Benjamins. 109-142. <doi.org/10.1075/la.132.05gia>.

Gibson, Edward; Futrell, Richard; Piantadosi, Steven T.; Dautriche, Isabelle; Mahowald, Kyle; Bergen, Leon & Levy, Roger 2019. How efficiency shapes human language. *Trends in Cognitive Sciences* 23,5. 389-407. <[10.1016/j.tics.2019.02.003](https://doi.org/10.1016/j.tics.2019.02.003)>.

Gibson, Edward & Wexler, Ken 1994. Triggers. *Linguistic Inquiry* 25,3. 407-454.

Gilkerson, Jill *et al.* 2017. Mapping the early language environment using

all-day recordings and automated analysis. *American Journal of Speech-Language Pathology* 26. 248-265. <DOI: 10.1044/2016_AJSLP-15-016>.

Ginsburg, Jason 2016. Modeling of Problems of Projection: A non-circular approach. *Glossa: A Journal of General Linguistics* 1,1:7. 1-46. <DOI: 10.5334/gjgl.22>.

Ginsburg, Jason 2024. Constraining free Merge. *Biolinguistics* 18, e14015. 1-60. <DOI: 10.5964/bioling.14015>.

Ginsburg, Jason & Fong, Sandiway 2019. Combining linguistic theories in a Minimalist Machine. In Stabler, Edward P. & Berwick, Robert C. (eds.), *Minimalist Parsing*. Oxford, UK: Oxford University Press. 39-68. <doi.org/10.1093/oso/9780198795087.003.0003>.

Giusti, Giuliana 2015. *Nominal Syntax at the Interfaces: A Comparative Analysis of Languages With Articles*. Cambridge: Cambridge Scholars Publishing.

Gold, E. Mark 1967. Language identification in the limit. *Information and Control* 10,5. 447-474. <doi.org/10.1016/S0019-9958(67)91165-5>.

Goldsmith, John & Riggle, Jason 2012. Information theoretic approaches to phonological structure: The case of Finnish vowel harmony. *Natural Language and Linguistic Theory* 30. 859-896.

Gorman, Kyle 2016. Pynini: A Python library for weighted finite-state grammar compilation. In *Procs. SIGFSM Workshop on Statistical NLP and Weighted Automata*. <doi.org/10.18653/v1/W16-2409>.

Goyal, Anirudh & Bengio, Yoshua 2022. Inductive Biases for Deep Learning of Higher-Level Cognition. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* 478 (2266). <doi.org/10.1098/rspa.2021.0068>.

Graf, Thomas 2020. Curbing feature coding: Strictly local feature assignment. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2020*. 362-371.

Graf, Thomas 2022c. Typological implications of tier-based strictly local movement. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2022*. 184-193.

Graf, Thomas 2022b. Subregular linguistics: Bridging theoretical linguistics and formal grammar. *Theoretical Linguistics* 48. 145-184. <doi.org/10.1515/tl-2022-2037>.

Graf, Thomas 2022a. Diving deeper into subregular syntax. *Theoretical Linguistics* 48. 245-278. <doi.org/10.1515/tl-2022-2043>.

Graf, Thomas 2023. Subregular tree transductions, movement, copies, traces, and the ban on improper movement. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2023*. 289-299. <doi.org/10.7275/tk1n-q855>.

Graf, Thomas *to appear*. Minimalism and computational linguistics. In Grohman, Kleanthes K. & Leivada, Evelina (eds.), *Handbook of Minimalism*. Cambridge: Cambridge University Press.

Graf, Thomas & Abner, Natasha 2012. Is syntactic binding rational?

In *Proceedings of the 11th international workshop on Tree Adjoining Grammars and related formalisms (TAG + 11)*. 189-197.

Graf, Thomas & Kostyszyn, Kalina 2021. Multiple wh-movement is not special: The subregular complexity of persistent features in Minimalist grammars. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2021*. 275-285.

Graf, Thomas & Mayer, Connor 2018. Sanskrit n-retroflexion is input-output tier-based strictly local. In *Proceedings of SIGMORPHON 2018*. 151-160.

Graf, Thomas; Monette, James & Zhang, Chong 2017. Relative clauses as a benchmark for Minimalist parsing. *Journal of Language Modelling* 5.1. 57-106. <doi.org/10.15398/jlm.v5i1.157>.

Graf, Thomas & Shafiei, Nazila 2019. C-command dependencies as TSL string constraints. In Jarosz, Gaja; Nelson, Max; O'Connor, Brendan & Pater, Joe (eds.), *Proceedings of the Society for Computation in Linguistics (SCiL) 2019*. 205-215.

Grice, Herbert Paul 1975. Logic and conversation. In Cole, Peter & Morgan, Jerry L. (eds.), *Syntax and Semantics*. New York, NY: Academic Press. 41-58.

Grillo, Nino 2008. *Generalized minimality: Syntactic underspecification in Broca's aphasia*. LOT.

Grünwald, Peter D. 2007. *The minimum description length principle*. Cambridge, MA: MIT Press.

Guardiano, Cristina & Longobardi, Giuseppe 2016. Parameter Theory and Parametric Comparison. In Roberts, Ian (ed.), *The Oxford Handbook of Universal Grammar*. Oxford, UK: Oxford University Press. 376-398. <doi.org/10.1093/oxfordhb/9780199573776.013.16>.

Guardiano, Cristina; Longobardi, Giuseppe; Cordoni, Guido & Crisma, Paola 2020. Formal Syntax as a Phylogenetic Method. In Janda, Richard D.; Joseph, Brian D. & Vance, Barbara S. (eds.), *The Handbook of Historical Linguistics* (1st ed.). Wiley. 145-182. <doi.org/10.1002/9781118732168.ch7>.

Guasti, Maria Teresa 2017. *Language acquisition: The growth of grammar*. Cambridge, MA: MIT Press.

Guérin, Jacqueline & May, Robert 1984. Extraposition and Logical Form. *Linguistic Inquiry* 15.1. 1-31.

Gulordava, Kristina; Bojanowski, Piotr; Grave, Edouard; Linzen, Tal & Baroni, Marco 2018. Colorless green recurrent networks dream hierarchically. In Walker, Marilyn; Ji, Heng & Stent, Amanda (eds.), *Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. New Orleans, LA: Association for Computational Linguistics. 1195-1205. <[DOI: 10.18653/v1/N18-1108](https://doi.org/10.18653/v1/N18-1108)>.

Haider, Hubert 2023. Is Chat-GPT a grammatically competent informant? <lingbuzz/007285>.

Hale, John 2001. A Probabilistic Earley Parser as a Psycholinguistic Model.

Second Meeting of the North American Chapter of the Association for Computational Linguistics. <aclanthology.org/N01-1021>.

Hale, John 2011. What a rational parser would do. *Cognitive Science* 35,3. 399-443.

Hale, John 2016. Information-theoretical Complexity Metrics. *Language and Linguistics Compass* 10,9. 397-412. <doi.org/10.1111/lnc3.12196>.

Hanson, Kenneth 2025. Tier-based strict locality and the typology of agreement. *Journal of Language Modelling* 13,1. 43-97. <doi.org/10.15398/jlm.v13i1.411>.

Hanson, Kenneth 2024. Tiers, paths, and syntactic locality: The view from learning. In *Proceedings of the society for computation in linguistics (SCiL) 2024*. 107-116. <doi.org/10.7275/scil.2135>.

Hao, Sophie 2022. *Theory and Applications of Attribution for Interpretable Language Technology*. PhD dissertation. Yale University, New Haven, CT.

Hao, Sophie; Angluin, Dana & Frank, Robert 2022. Formal language recognition by hard attention transformers: Perspectives from circuit complexity. *Transactions of the Association for Computational Linguistics* 10. 800-810. <DOI: 10.1162/tacl_a_00490>.

Hao, Sophie; Mendelsohn, Simon; Sterneck, Rachel; Martinez, Randi & Frank, Robert 2020. Probabilistic predictions of people perusing: Evaluating metrics of language model performance for psycholinguistic modeling. In Chersoni, Emmanuele; Jacobs, Cassandra; Oseki, Yohei; Prévot, Laurent & Santus, Enrico (eds.), *Workshop on Cognitive Modeling and Computational Linguistics*. Online: Association for Computational Linguistics.

Hao, Sophie & Andersson, Samuel 2019. Unbounded stress in subregular phonology. In *Proceedings of the 16th Sigmorphon workshop on computational research in phonetics, phonology and morphology*. 135-143. <doi.org/10.18653/v1/W19-4216>.

Hart, Betty & Risley, Todd R. 1992. American parenting of language-learning children: Persisting differences in family-child interactions observed in natural home environments. *Developmental Psychology* 28,6. 1096-1105. <doi.org/10.1037/0012-1649.28.6.1096>.

Haspelmath, Martin 1993. *A grammar of Lezgian*. Mouton Grammar Library 9. Berlin: Mouton de Gruyter.

Haspelmath, Martin 2007. Pre-established categories don't exist – consequences for language description and typology. *Linguistic Typology* 11. 119-132.

Haspelmath, Martin 2008. Parametric versus functional explanations of syntactic universals. In Biberauer, Theresa (ed.), *The limits of syntactic variation*. Amsterdam: Benjamins. Accessed 27 May 2016.

Haspelmath, Martin 2010a. Comparative concepts and descriptive categories in crosslinguistic studies. *Language* 86,3. 663-687. <[doi:10.1353/lan.2010.0021](https://doi.org/10.1353/lan.2010.0021)>.

Haspelmath, Martin 2010b. Framework-free grammatical theory. In Heine,

Bernd & Narrog, Heiko (eds.), *The Oxford Handbook of Linguistic Analysis*. Oxford: Oxford University Press. 341-365.

Haspelmath, Martin 2018. How comparative concepts and descriptive linguistic categories are different. In Van Olmen, Daniël; Mortelmans, Tanja & Brisard, Frank (eds.), *Aspects of linguistic variation: Studies in honor of Johan van der Auwera*. Berlin: De Gruyter Mouton. 83-113. <zenodo.org/record/3519206>.

Haspelmath, Martin 2020. Human linguisticity and the building blocks of languages. *Frontiers in Psychology* 10,3056. 1-10. <[doi:10.3389/fpsyg.2019.03056](https://doi.org/10.3389/fpsyg.2019.03056)>.

Haspelmath, Martin 2021. General linguistics must be based on universals (or nonconventional aspects of language). *Theoretical Linguistics* 47,1-2. 1-31. <[doi:10.1515/tl-2021-2002](https://doi.org/10.1515/tl-2021-2002)>.

Haspelmath, Martin *to appear*. Breadth versus depth: Theoretical reasons for system-independent comparison of languages. In Nefdt, Ryan (ed.), *Oxford Handbook of Philosophy of Linguistics*. Oxford: Oxford University Press. <ling.auf.net/lingbuzz/008437>.

Hauser, M. D.; Chomsky, N. & Fitch, W. T. 2002. The faculty of language: What is it, who has it, and how did it evolve? *Science* 298 (5598). 1569-1579. <doi.org/10.1126/science.298.5598.1569>.

Hawkins, John A. 2014. *Cross-linguistic variation and efficiency*. New York: Oxford University Press.

Heim, Johannes & Wiltschko, Martina 2025. Rethinking structural growth: Insights from the acquisition of interactional language. *Glossa: A journal of general linguistics* 10,1. <doi.org/10.16995/glossa.16396>.

Heinz, Jeffrey 2010. Learning long-distance phonotactics. *Linguistic Inquiry* 41. 623-661. <doi.org/10.1162/LING_a_00015>.

Heinz, Jeffrey 2018. The computational nature of phonological generalizations. In Hyman, Larry & Plank, Frank (eds.), *Phonological typology*. Mouton De Gruyter. 126-195.

Hewitt, John & Manning, Christopher D. 2019. A structural probe for finding syntax in word representation. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. 4129-4138.

Hey, Tony; Tansley, Stewart; Tolle, Kristin & Gray, Jim (eds.) 2009. *The Fourth Paradigm: Data-Intensive Scientific Discovery*. Redmond, WA: Microsoft Research.

Hinton, Geoffrey 2022. The forward-forward algorithm: Some preliminary investigations. <[arXiv:2212.13345](https://arxiv.org/abs/2212.13345)>.

Hochreiter, Sepp; Bengio, Yoshua; Frasconi, Paolo & Schmidhuber, Jürgen 2001. Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In Kremer, S. C. & Kolen, J. F. (eds.), *A Field Guide to Dynamical Recurrent Neural Networks*. IEEE Press.

Hochreiter, Sepp & Schmidhuber, Jürgen 1997. Long short-term memory. *Neural Computation* 9,8. 1735-1780.

Hockenmaier, Julia & Steedman, Mark 2007. CCGbank: A corpus of CCG derivations and dependency structures extracted from the Penn Treebank. *Computational Linguistics* 33,3. 355-396. <DOI: 10.1162/coli.2007.33.3.355>.

Holmes, V. M. & Forster, K. 1972. Click location and syntactic structure. *Perception and Psychophysics* 12. 9-15. <doi.org/10.3758/bf03212836>.

Hornik, Kurt; Stinchcombe, Maxwell & White, Halbert 1989. Multilayer Feedforward Networks Are Universal Approximators. *Neural Networks* 2,5. 359-66. <[doi.org/10.1016/0893-6080\(89\)90020-8](https://doi.org/10.1016/0893-6080(89)90020-8)>.

Hosseini, Eghbal A. *et al.* 2024. Artificial neural network language models align neurally and behaviorally with humans even after a developmentally realistic amount of training. *Neurobiology of Language*. Apr 1.5,1. 43-63.

Hsu, Anne S. & Chater, Nick 2010. The Logical Problem of Language Acquisition: A Probabilistic Perspective. *Cognitive Science* 34,6. 972-1016. <doi.org/10.1111/j.1551-6709.2010.01117.x>.

Hsu, Anne S.; Chater, Nick & Vitányi, Paul 2013. Language Learning From Positive Evidence, Reconsidered: A Simplicity-Based Approach. *Topics in Cognitive Science* 5,1. 35-55. <doi.org/10.1111/tops.12005>.

Hu, Jennifer; Gauthier, Jon; Qian, Peng; Wilcox, Ethan & Levy, Roger 2020. A Systematic Assessment of Syntactic Generalization in Neural Language Models. In Jurafsky, Dan; Chai, Joyce; Schluter, Natalie & Tetreault, Joel (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics. 1725-1744. <doi.org/10.18653/v1/2020.acl-main.158>.

Hu, Michael Y.; Mueller, Aaron; Ross, Candace; Williams, Adina; Linzen, Tal; Zhuang, Chengxu; Cotterell, Ryan; Choshen, Leshem; Warstadt, Alex & Wilcox, Ethan 2024. Findings of the Second BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora. <doi.org/10.48550/ARXIV.2412.05149>.

Huang, C.-T. James 1982. *Logical relations in Chinese and the theory of grammar*. Cambridge, MA: MIT Press.

Huang, Lei; Yu, Weijiang; Ma, Weitao; Zhong, Weihong; Feng, Zhangyin; Wang, Haotian; Chen, Qianglong; Peng, Weihua; Feng, Xiaocheng; Qin, Bing *et al.* 2023. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. <[arXiv:2311.05232](https://arxiv.org/abs/2311.05232)>.

Huh, Minyoung; Cheung, Brian; Wang, Tongzhou & Isola, Phillip 2024. Position: The Platonic Representation Hypothesis. In Salakhutdinov, Ruslan; Kolter, Zico; Heller, Katherine; Weller, Adrian; Oliver, Nuria; Scarlett, Jonathan & Berkenkamp, Felix (eds.), *Proceedings of the 41st International Conference on Machine Learning*. 235. 20617-42. Proceedings of Machine Learning Research. PMLR. <proceedings.mlr.press/v235/huh24a.html>.

Hume, David 1739. *A Treatise of Human Nature: Being an Attempt to Introduce*

the Experimental Method of Reasoning Into Moral Subjects. London: John Noon.

Hume, David 1748. *Philosophical Essays Concerning Human Understanding*. London: A. Millar.

Hunter, Tim; Stanojević, Miloš & Stabler, Edward P. 2019. The active-filler strategy in a move-eager left-corner Minimalist grammar parser. In *Proceedings of the workshop on cognitive modeling and computational linguistics*. 1-10.

Ibbotson, Paul & Tomasello, Michael 2016. Evidence rebuts Chomsky's theory of language learning. *Scientific American* 315, 5. 70.

İdrisoğlu, İşıl & Spaniel, William 2024. *Information problems and Russia's invasion of Ukraine*. *Conflict Management and Peace Science* 41,5. 514-533. <DOI: 10.1177/07388942241238583>.

Ionin, Tania & Matushansky, Ora 2006. The composition of complex cardinals. *Journal of Semantics* 16. 315-360.

Jackendoff, Ray 1988. Why are they saying these things about us? *Natural Language and Linguistic Theory* 6,3. 435-442.

Jardine, Adam 2016. Computationally, tone is different. *Phonology* 33. 247-283. <doi.org/10.1017/S0952675716000129>.

Ji, Zwei; Lee, Nayeon; Frieske, Rita; Yu, Tiezheng; Su, Dan; Xu, Yan; Ishii, Etsuko; Bang, Ye Jin; Madotto, Andrea & Fung, Pascale 2023. Survey of hallucination in natural language generation. *ACM Computing Surveys* 55,12. 248:1-248:38. <DOI: 10.1145/3571730>.

Jurafsky, Dan & Martin, James H. 2008. *Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition*. 2nd edition. Russell, Stuart & Norvig, Peter (eds.). Upper Saddle River, NJ: Prentice Hall.

Kalouli, Aikaterini-Lida 2021. *Hy-NLI: A hybrid system for state-of-the-art natural language inference*. University of Konstanz dissertation.

Kalouli, Aikaterini-Lida; Crouch, Richard & de Paiva, Valeria 2020. Hy-NLI: A hybrid system for natural language inference. In *Proceedings of the 28th International Conference on Computational Linguistics*. Barcelona, Spain (Online): International Committee on Computational Linguistics. 5235-5249. <aclanthology.org/2020.coling-main.459>.

Kaplan, Jared; McCandlish, Sam; Henighan, Tom; Brown, Tom B.; Chess, Benjamin; Child, Rewon; Gray, Scott; Radford, Alec; Wu, Jeffrey & Amodei, Dario 2020. *Scaling Laws for Neural Language Models*. <doi.org/10.48550/ARXIV.2001.08361>.

Kaplan, Ronald M. 1987. Three seductions of computational linguistics. In Whitelock, P.; Wood, M. M.; Somers, H.; Johnson, R. & Bennett, P. (eds.), *Linguistic Theory and Computer Applications*. London: Academic Press. 149-188.

Kaplan, Ronald M. 2019. Computational psycholinguistics. *Computational Linguistics* 45,4. 607-626. <doi:10.1162/coli_a_00359>. <aclanthology.org/J19-4001>.

Kaplan, Ronald M.; King, Tracey H. & Maxwell, John T. III 2002. Adapting

existing grammars: The XLE experience. In *COLING-02: Grammar Engineering and Evaluation*.

Katz, Phillip 1986. PKZIP. Commercial Compression System, Version 1.1. <www.pkware.com/pkzip>.

Katzir, Roni 2023. *Why large language models are poor theories of human linguistic cognition. A reply to Piantadosi (2023)* [LingBuzz]. <[lingBuzz/007190](https://lingBuzz.org/007190)>. *Biolinguistics* 17. <doi.org/10.5964/bioling.13153>.

Kawahara, Shigeto; Noto, Atsushi & Kumagai, Gakuji 2018. Sound symbolic patterns in Pokémon names. *Phonetica* 75,3. 219-244. <DOI: 10.1159/000484938>.

Kayne, Richard S. 1994. *The antisymmetry of syntax*. Cambridge, MA: MIT Press.

Keine, Stefan 2020. *Probes and their horizons*. Cambridge, MA: MIT Press.

Kempson, Ruth; Meyer Viol, Wilfried & Gabbay, Dov M. 2001. *Dynamic Syntax: The Flow of Language Understanding*. Wiley.

Kennedy, Christopher 2015. A “de-Fregean” semantics (and neo-Gricean pragmatics) for modified and unmodified numerals. *Semantics & Pragmatics* 8. 1-44. <dx.doi.org/10.3765/sp.8.1>.

Kerr, Dara 2024. How Memphis became a battleground over Elon Musk’s xAI supercomputer. *NPR* 11 September 2024. <www.npr.org/2024/09/11/6588134/elon-musk-ai-xai-supercomputer-memphis-pollution>.

Kharitonov, Eugene & Chaabouni, Rahma 2021. What they do when in doubt: A study of inductive biases in seq2seq learners. In *ICLR 2021 Conference Track*. Online: OpenReview.

Kim, Najoung; Patel, Roma; Poliak, Adam; Wang, Alex; Xia, Patrick; McCoy, R. Thomas; Tenney, Ian; Ross, Alexis; Linzen, Tal & van Durme, Benjamin 2019. Probing what different NLP tasks teach machines about function word comprehension. <[arXiv:1904.11544](https://arxiv.org/abs/1904.11544)>.

Kingma, Diederik P. & Ba, Jimmy Lei 2015. Adam: A method for stochastic optimization. In *ICLR 2015 Conference Track*. San Diego, CA: OpenReview.

Kirov, Christo & Cotterell, Ryan 2018. Recurrent Neural Networks in Linguistic Theory: Revisiting Pinker and Prince (1988) and the Past Tense Debate. *Transactions of the Association for Computational Linguistics* 6 (December). 651-665. <doi.org/10.1162/tacl_a_00247>.

Kitaev, Nikita; Cao, Steven & Klein, Daniel 2019. Multilingual constituency parsing with self-attention and pre-training. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (ACL 2019). 3499-3505.

Kitchin, Rob 2014. Big Data, new epistemologies and paradigm shifts. *Big Data & Society* 1,1. <DOI: 10.1177/2053951714528481>.

Klein, Daniel & Manning, Christopher D. 2003. Accurate unlexicalized parsing. In *Proceedings of the 41st Meeting of the Association for Computational Linguistics*. 423-430.

Kleyko, Denis; Rachkovskij, Dmitri; Osipov, Evgeny & Rahimi, Abbas

2023. A survey on hyperdimensional computing aka vector symbolic architectures, parts 1 and 2. *ACM Computing Surveys* 55. 130. <doi.org/10.1145/3538531>.

Klimova, Blanka; Pikhart, Marcel & Al-Obaydi, Liqaa Habeb 2024. Exploring the potential of ChatGPT for foreign language education at the university level. *Frontiers in Psychology* 15. <DOI: 10.3389/fpsyg.2024.1269319>.

Knight, Chris 2016. *Decoding Chomsky: Science and Revolutionary Politics*. New Haven, CT: Yale University Press. <DOI: 10.12987/9780300222159>.

Kobele, Gregory M. 2023. Minimalist Grammars and Decomposition. In Kleanthes, Grohmann & Leivada, Evelina (eds.), *The Cambridge Handbook of Minimalism*. Cambridge University Press.

Kobele, Gregory M.; Gerth, Sabrina & Hale, John T. 2013. Memory resource allocation in top-down Minimalist parsing. In Morrill, Glyn & Nederhof, Mark-Jan (eds.), *Formal grammar: 17th and 18th international conferences, FG 2012, Opole, Poland, August 2012, Revised selected papers, FG 2013, Düsseldorf, Germany, August 2013*. 32-51. Berlin / Heidelberg: Springer. <doi.org/10.1007/978-3-642-39998-5_3>.

Kodner, Jordan; Payne, Sarah & Heinz, Jeffrey 2023. Why linguistics will thrive in the 21st century: A reply to Piantadosi (2023). <arxiv.org/abs/2308.03228>.

Koerner, Konrad 1983. The Chomskyan 'revolution' and its historiography: A few critical remarks. *Language & Communication* 3,2. 147-169. <DOI: 10.1016/0271-5309(83)90012-5>.

Kojima, Takeshi; Gu, Shixiang (Shane); Reid, Machel; Matsuo, Yutaka & Iwasawa, Yusuke 2022. Large language models are zero-shot reasoners. In Koyejo, S.; Mohamed, S.; Agarwal, Al; Belgrave, D.; Cho, K. & Oh, A. (eds.), *Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track*. New Orleans, LA: Curran Associates, Inc. 22199-22213.

Kolmogorov, Andrey N. 1963. On Tables of Random Numbers. *Sankhyā: The Indian Journal of Statistics, Series A (1961-2002)* 25,4. 369-376.

Kuhn, Thomas 1962. *The Structure of Scientific Revolutions*. Chicago, IL: University of Chicago Press.

Kwon, Diana 2024. AI is complicating plagiarism. How should scientists respond? *Nature*. <DOI: 10.1038/d41586-024-02371-z>.

Lake, Brenden M. & Baroni, Marco 2023. Human-like systematic generalization through a meta-learning neural network. *Nature* 623. 115-121. <doi.org/10.1038/s41586-023-06668-3>.

Lakretz, Yair; Hupkes, Dieuwke; Vergallito, Alessandra; Marelli, Marco; Baroni, Marco & Dehaene, Stanislas 2021. Mechanisms for handling nested dependencies in neural-network language models and humans. *Cognition* 213. 1-24. <DOI: 10.1016/j.cognition.2021.104699>. <www.sciencedirect.com/science/article/pii/S0010027721001189>.

Lakretz, Yair; Kruszewski, German; Desbordes, Theo; Hupkes, Dieuwke; Dehaene, Stanislas & Baroni, Marco 2019. The emergence of number and syntax units in LSTM language models. In Burstein, Jill; Doran, Christy & Solorio, Thamar (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Vol. 1*. Minneapolis, MN: Association for Computational Linguistics. 11-20. <DOI: 10.18653/v1/N19-1002>.

Lan, Nur; Chemla, Emmanuel & Katzir, Roni 2024. Large language models and the argument from the poverty of the stimulus. *Linguistic Inquiry*. 1-28. <doi.org/10.1162/ling_a_00533>.

Lan, Nur; Geyer, Michal; Chemla, Emmanuel & Katzir, Roni 2022. Minimum Description Length Recurrent Neural Networks. *Transactions of the Association for Computational Linguistics* 10 (July). 785-99. <doi.org/10.1162/tacl_a_00489>.

Landman, Fred 2003. Predicate-argument mismatches and the adjectival theory of indefinites. In Coene, M. & d'Hulst, Y. (eds.), *From NP to DP: The syntax and semantics of noun phrases*. Volume 1. 211-237. Amsterdam: John Benjamins.

Lasnik, Howard & Lidz, Jeffrey L. 2016. The argument from the poverty of the stimulus. In Roberts, Ian (ed.), *The Oxford Handbook of Universal Grammar*. Oxford: Oxford University Press. 221-248.

Latour, Bruno 1984. *Les Microbes: Guerre et paix, suivi de Irréductions*. Paris, France: A. M. Métailié.

Law, John & Lodge, Peter 1984. *Science for Social Scientists*. London: Palgrave Macmillan UK. <DOI: 10.1007/978-1-349-17536-9>.

Lawson, Alex 2024. Google to buy nuclear power for AI datacentres in 'world first' deal. *Guardian* 15 October 2024. <www.theguardian.com/technology/2024/oct/15/google-buy-nuclear-power-ai-datacentres-kairos-power>.

Lee, So Young & De Santo, Aniello. A computational view into the structure of attachment ambiguities in Chinese and Korean. In *Proceedings of the north east linguistics society*. 189-198.

Levesque, Hector J. 2014. On our best behaviour. *Artificial Intelligence* 212. 27-35. <doi.org/10.1016/j.artint.2014.03.007>.

Levshina, Natalia 2023. *Communicative efficiency: Language structure and use*. Cambridge: Cambridge University Press.

Levy, Roger 2008. Expectation-based syntactic comprehension. *Cognition* 106,3. 1126-1177.

Li, Jixing; Bhattacharji, Shohini; Zhang, Shulin; Franzluebbers, Berta; Luh, Wen-Ming; Spreng, R. Nathan; Brennan, Jonathan R.; Yang, Yiming; Pallier, Christophe & Hale, John 2022. *Le Petit Prince* multilingual naturalistic fMRI corpus. *Scientific Data* 9. 530. <doi.org/10.1038/s41597-022-01625-7>.

Li, Jixing & Hale, John 2019. Grammatical predictors for fMRI time-courses.

In Berwick, Robert C. & Stabler, Edward P. (eds.), *Minimalist Parsing*. Oxford, UK: Oxford University Press. 159-173. <doi.org/10.1093/oso/9780198795087.003.0007>.

Li, Ming & Vitányi, Paul 2008. *An Introduction to Kolmogorov Complexity and Its Applications*. New York: Springer. <doi.org/10.1007/978-0-387-49820-1>.

Lidz, Jeffrey & Gleitman, Lila R. 2004. Argument structure and the child's contribution to language learning. *Trends in Cognitive Sciences* 8,4.

Lillicrap, Timothy P.; Santoro, Adam; Marris, Luke; Akerman, Colin J. & Hinton, Geoffrey 2020. Backpropagation and the Brain. *Nature Reviews Neuroscience* 21,6. 335-46. <doi.org/10.1038/s41583-020-0277-3>.

Lin, Stephanie; Hilton, Jacob & Evans, Owain 2022. TruthfulQA: Measuring how models mimic human falsehoods. In Muresan, Smaranda; Nakov, Preslav & Villavicencio, Aline (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. Dublin, Ireland: Association for Computational Linguistics. 3214-3252. <DOI: 10.18653/v1/2022.acl-long.229>.

Ling, Jacqueline 2001. Power of a human brain. In *Physics Factbook*. <hypertextbook.com/facts/2001/JacquelineLing.shtml>.

Link, Godehard 1983. The logical analysis of plurals and mass terms: A lattice-theoretical approach. In Bauerle, Rainer; Schwarze, Christoph & von Stechow, Arnim (eds.), *Meaning, Use, and the Interpretation of Language*. Berlin / New York: de Gruyter. 302-323.

Linzen, Tal & Baroni, Marco 2021. Syntactic structure from deep learning. *Annual Review of Linguistics* 7. 195-212. <DOI: 10.1146/annurev-linguistics-032020-051035>.

Linzen, Tal; Dupoux, Emmanuel & Goldberg, Yoav 2016. Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies. *Transactions of the Association for Computational Linguistics* 4. 521-535. <doi.org/10.1162/tacl_a_00115>.

Liu, Lei 2023. Processing advantages of end-weight. *Proceedings of the Society for Computation in Linguistics* 6. 250-258.

Lohninger, Magdalena & Wurmbrand, Susi 2025. Typology of Complement Clauses. In Benz, Anton; Frey, Werner; Gärtner, Hans-Martin; Krifka, Manfred; Schenner, Mathias & Źygis, Marzena (eds.), *Handbook of clausal embedding*. Berlin: Language Science Press.

Longobardi, Giuseppe 1994. Reference and proper names: A theory of N-movement in syntax and logical form. *Linguistic Inquiry* 25. 609-665.

Manning, Christopher D.; Clark, Kevin; Hewitt, John; Khandelwal, Uravashi & Levy, Omer 2020. Emergent linguistic structure in artificial neural networks trained by self-supervision. In Gavish, Matan (ed.), *Proceedings of the National Academy of Science of the United States of America* 117. 30046-30054. <DOI: 10.1073/pnas.1907367117>.

Manzini, Maria Rita 1983. Syntactic conditions on phonological rules. *MIT Working Papers in Linguistics* 5. 1-9.

Marantz, Alec 2019. What do linguists do? In *The Julius Silver, Roslyn S. Silver, and Enid Silver Winslow Dialogues in Arts and Science, New York University*. <as.nyu.edu/content/dam/nyu-as/as/documents/silverdialogues/SilverDialogues_Marantz.pdf>.

Marcus, Gary 2022. Noam Chomsky and GPT-3 [Blog post]. *Marcus on AI*. <garymarcus.substack.com/p/noam-chomsky-and-gpt-3>. Last accessed 24/02/2025.

Marcus, Mitchell *et al.* 1994. The Penn Treebank: Annotating predicate argument structure. In *Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey*.

Marr, David 1982. *Vision: A computational investigation into the human representation and processing of visual information*. San Francisco, CA: Freeman.

Marr, David & Poggio, Tomaso 1976. *From Understanding Computation to Understanding Neural Circuitry*. Cambridge, MA: MIT Press.

Martinetz, Julius; Linse, Christoph & Martinetz, Thomas 2024. Rethinking generalization of classifiers in separable classes scenarios and over-parameterized regimes. *International Joint Conference on Neural Networks 2024*. 1-10. <doi.org/10.1109/IJCNN60899.2024.10650680>.

Marvin, Rebecca & Linzen, Tal 2018. Targeted Syntactic Evaluation of Language Models. *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*. 1192-1202. <doi.org/10.18653/v1/D18-1151>.

May, Robert 1985. *Logical form: Its structure and derivation* (Vol. 12). Cambridge, MA: MIT Press.

Mayer, Connor & Major, Travis 2018. A challenge for tier-based strict locality from Uyghur backness harmony. In Foret, Annie; Kobelev, Greg & Pogodalla, Sylvain (eds.), *Proceedings of formal grammar 2018*. Berlin: Springer. 62-83.

McCawley, James D. 1976. Introduction. In McCawley, James D. (ed.), *Notes From the Linguistic Underground*. New York, NY: Academic Press. 1-19.

McClelland, James L. & Rumelhart, David E. 1991. *Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises*. 2nd print. Computational Models of Cognition and Perception. Cambridge, MA: MIT Press.

McCoy, Richard; Frank, Robert & Linzen, Tal 2018. Revisiting the poverty of the stimulus: Hierarchical generalization without a hierarchical bias in recurrent neural networks. In *Proceedings of the Annual Meeting of the Cognitive Science Society*. Madison, WI: Cognitive Science Society. 2096-2101.

McCoy, R. Thomas; Yao, Shunyu; Friedman, Dan; Hardy, Matthew & Griffiths, Thomas L. 2023. Embers of autoregression: Understanding large language models through the problem they are trained to solve. <arxiv.org/abs/2309.13638>.

McCullough, Gretchen 2019. *Because Internet: Understanding the New Rules of Language*. New York, NY: Riverhead Books.

McGee, Thomas & Blank, Idan 2024. Evidence against syntactic encapsulation in large language models. *Procs. Cognitive Science Society* 46.

McKenzie, Ian R.; Lyzhov, Alexander; Pieler, Michael Martin; Parrish, Alicia; Mueller, Aaron; Prabhu, Ameya; McLean, Euan; Shen, Xudong; Cavanagh, Joe, Gritsevskiy, Andrew George *et al.* 2023. Inverse scaling: When bigger isn't better. *Transactions on Machine Learning Research*.

McNally, Louise & Boleda, Gemma 2004. Relational adjectives as properties of kinds. *Empirical Issues in Syntax and Semantics* 5. 179-196. <doi.org/ISSN1769-7158>.

Merrill, William; Sabharwal, Ashish & Smith, Noah A. 2022. Saturated transformers are constant-depth threshold circuits. *Transactions of the Association for Computational Linguistics* 10. 843-856. <DOI: 10.1162/tacl_a_00493>.

Michaelis, Jens 2001. Derivational Minimalism Is Mildly Context-Sensitive. In Moortgat, Michael (ed.), *Logical Aspects of Computational Linguistics* (Vol. 2014). Berlin / Heidelberg: Springer. 179-198. <doi.org/10.1007/3-540-45738-0_11>.

Mikolov, Tomáš 2012. *Statistical Language Models Based on Neural Networks*. PhD dissertation. Brno University of Technology, Brno, Czech Republic.

Milewski, Bartosz 2020. *Category Theory for Programmers*. <bartoszmilewski.com>.

Miller, George A. & Chomsky, Noam 1963. Finitary Models of Language Users. In Luce, D. (ed.), *Handbook of Mathematical Psychology*. John Wiley & Sons. 2-419.

Milway, Daniel 2023. A response to Piantadosi (2023). <lingbuzz/007264>.

Mishra, Swaroop; Khashabi, Daniel; Baral, Chitta & Hajishirzi, Hannaneh 2022. Cross-task generalization via natural language crowdsourcing instructions. In Muresan, Smaranda; Nakov, Preslav & Villavicencio, Aline (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. Dublin, Ireland: Association for Computational Linguistics. 3470-3487. <DOI: 10.18653/v1/2022.acl-long.244>.

Mitchell, J.; Kazanina, Nina; Houghton, Conor J.; Bowers, Jeffrey S. 2019. Do LSTMs know about Principle C? In *2019 Conference on Cognitive Computational Neuroscience*.

Mollica, Frank & Piantadosi, Stephen 2019. Humans store about 1.5 megabytes of information during language acquisition. *Royal Society Open Science* 6,3.

Mollica, Frank & Piantadosi, Stephen 2022. Meaning without reference in large language models. <arXiv:2208.02957>.

Momma, Shota & Phillips, Colin 2018. The Relationship Between Parsing and Generation. *Annual Review of Linguistics* 4,1. 233-254. <doi.org/10.1146/annurev-linguistics-011817-045719>.

Moro, Andrea 2023. Embodied syntax: Impossible languages and the irreducible difference between humans and machines. *Sistemi intelligenti* 2.

321-328. <doi.org/10.1422/108132>.

Moro, Andrea; Greco, Matteo & Cappa, Stefano F. 2023. Large languages, impossible languages and human brains. *Cortex* 167. 82-85. <doi.org/10.1016/j.cortex.2023.07.003>.

Müller, Stefan 2024. Large language models: The best linguistic theory, a wrong linguistic theory, or no linguistic theory at all. *Zeitschrift für Sprachwissenschaft*.

Mullins, Nicholas C. 1975. A sociological theory of scientific revolution. In Knorr, Karin D.; Strasser, Hermann & Zilian, Hans Georg (eds.), *Determinants and Controls of Scientific Development*. Dordrecht, Netherlands: Springer Netherlands. 185-203.

Murray, Stephen O. 1994. *Theory Groups and the Study of Language in North America*. Amsterdam, Netherlands: John Benjamins.

Murty, Shikhar; Sharma, Pratyusha; Andreas, Jacob & Manning, Christopher D. 2022. Characterizing intrinsic compositionality in transformers with tree projections.

Naveed, Humza; Asad Ullah Khan; Shi Qiu; Saqib, Muhammad; Anwar, Saeed; Usman, Muhammad; Akhtar, Naveed; Barnes, Nick & Mian, Ajmal 2024. A comprehensive overview of large language models. <arxiv.org/abs/2307.06435>.

Newmeyer, Frederick J. 1980. *Linguistic theory in America: The first quarter century of Transformational Generative Grammar*. New York: Academic Press.

Newmeyer, Frederick J. 1986. Has there been a 'Chomskyan revolution' in linguistics? *Language* 62,1. 1-18. <DOI: 10.2307/415597>.

Newmeyer, Frederick J. 2004. Against a parameter-setting approach to typological variation. *Linguistic Variation Yearbook* 4,1. 181-234. <[doi:10.1075/livy.4.06new](https://doi.org/10.1075/livy.4.06new)>.

Newmeyer, Frederick J. 2021. Complexity and relative complexity in generative grammar. *Frontiers in Communication* 6. <[doi:10.3389/fcomm.2021.614352](https://doi.org/10.3389/fcomm.2021.614352)>.

Newmeyer, Frederick J. & Emonds, Joseph 1971. The linguist in American society. In *Papers from the Seventh Regional Meeting of the Chicago Linguistic Society*. Chicago, IL: Chicago Linguistic Society. 285-303.

Nivre, Joakim; Agić, Željko; Ahrenberg, Lars; Antonsen, Lene; Aranzabe, María Jesus; Asahara, Masayuki; Ateyah, Luma; Attia, M.; Atutxa, A.; Augustinus, L. et al. 2017. *Universal Dependencies 2.1*.

Norvig, Peter 2017. On Chomsky and the two cultures of statistical learning. In Pietsch, Wolfgang; Wernecke, Jörg & Ott, Maximilian (eds.), *Berechenbarkeit der Welt? Philosophie und Wissenschaft im Zeitalter von Big Data*. Wiesbaden, Germany: Springer Fachmedien. 61-83.

Nosengo, Nicola 2014. *I robot ci guardano: Aerei senza pilota, chirurghi a distanza e automi solidali*. Bologna: Zanichelli.

Noy, Shakked & Zhang, Whitney 2023. Experimental evidence on the productivity effects of generative artificial intelligence. *Science* 381, 6654. 187-192. <DOI: 10.1126/science.adh2586>.

Nvidia n.d. *meta/llama-3.1-405b-instruct*. *Nvidia API reference*. <docs.api.nvidia.com/nim/reference/meta-llama-3_1-405b>.

Nye, Maxwell; Andreassen, Anders Johan; Gur-Ari, Guy; Michalewski, Henryk; Austin, Jacob; Bieber, David; Dohan, David; Lewkowycz, Aitor; Bosma, Maarten; Luan, David; Sutton, Charles & Odena, Augustus (2022). Show your work: Scratchpads for intermediate computation with language models. In *ICLR 2022 Workshop DL4C*. Online: OpenReview.

Oepen, Stephan; Toutanova, Kristina; Shieber, Stuart; Manning, Christopher; Flickinger, Dan & Brants, Thorsten 2022. The LinGO Redwoods treebank: Motivation and preliminary applications. In *COLING 2002: The 17th International Conference on Computational Linguistics: Project Notes*. Taipei, Taiwan: Association for Computational Linguistics.

Oerter, Robert 2006. *The theory of almost everything: The Standard Model, the unsung triumph of modern physics*. New York: Pi Press.

Oh, Byung-Doh & Schuler, William 2023. Why does surprisal from larger transformer-based language models provide a poorer fit to human reading times? *Transactions of the Association for Computational Linguistics* 11. 336-350. <DOI: 10.1162/tacl_a_00548>.

OpenAI 2023. *GPT-4 Technical Report* <arxiv.org/abs/2303.08774>.

Ouyang, Long; Wu, Jeff; Jiang, Xu; Almeida, Diogo; Wainwright, Carroll L.; Mishkin, Pamela; Zhang, Chong; Agarwal, Sandhini; Slama, Katarina; Ray, Alex *et al.* 2022. Training language models to follow instructions with human feedback. <[arXiv:2203.02155](https://arxiv.org/abs/2203.02155)>.

Ozaki, Satoru; Santo, Aniello De; Linzen, Tal & Dillon, Brian 2024. CCG parsing effort and surprisal jointly predict RT but underpredict garden-path effects. *Society for Computation in Linguistics* 7. 362-364. <doi.org/10.7275/scil.2229>.

Papineni, Kishore; Roukos, Salim; Ward, Todd & Zhu, Wei-Jing 2001. BLEU: A Method for Automatic Evaluation of Machine Translation. In *Proceedings of the 40th Annual Meeting on Association for Computational Linguistics - ACL '02*, 311. Philadelphia, Pennsylvania: Association for Computational Linguistics. <doi.org/10.3115/1073083.1073135>.

Park, Peter S.; Goldstein, Simon; O’Gara, Aidan; Chen, Michael & Hendrycks, Dan 2024. AI deception: A survey of examples, risks, and potential solutions. *Patterns* 5, 5. 100988. <DOI: 10.1016/j.pattern.2024.100988>.

Pascanu, Razvan; Mikolov, Tomas & Bengio, Yoshua 2013. On the difficulty of training recurrent neural networks. In Dasgupta, Sanjoy & McAllester, David (eds.), *ICML’13: Proceedings of the 30th International Conference on International Conference on Machine Learning*. Vol. 28. Atlanta, GA: Proceedings of Machine Learning Research. 1310-1318.

Pasternak, Robert & Graf, Thomas 2021. Cyclic scope and processing difficulty in a Minimalist parser. *Glossa* 6. 1-34. <doi.org/10.5334/gjgl.1209>.

Pasteur, Louis 1876. *Études sur la bière, ses maladies, causes qui les provoquent, procédé pour la rendre inaltérable, avec une théorie nouvelle de la fermentation*. Paris: Gauthier-Villars.

Pasteur, Louis 1880. De l'extension de la théorie des germes à l'étiologie de quelques maladies communes. In *Comptes rendus hebdomadaires des séances de l'Académie des sciences*. Vol. 90. Paris: Gauthier-Villars. 1033-1034.

Pasteur, Louis; Joubert, Jules & Chamberland, Charles 1878. La théorie des germes et ses applications à la médecine et à la chirurgie. In *Comptes rendus hebdomadaires des séances de l'Académie des sciences*. Vol. 86. Paris: Gauthier-Villars. 1037-1043.

Pater, Joe 2019. Generative linguistics and neural networks at 60: Foundation, friction, and fusion. *Language* 95. 41-74. <doi.org/10.1353/lan.2019.0009>.

Pearl, Lisa 2022. Poverty of the stimulus without tears. *Language Learning and Development* 18,4. 415-454. <DOI: 10.1080/15475441.2021.1981908>.

Pennington, Jeffrey; Socher, Richard & Manning, Christopher D. 2014. Glove: Global vectors for word representation. *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*. 1532-1543.

Pereira, Fernando 2000. Formal grammar and information theory: Together again? *Philosophical Transactions: Mathematical, Physical and Engineering Sciences* 358,1769. 1239-1253.

Perez, Ethan; Huang, Saffron; Song, Francis; Cai, Trevor; Ring, Roman; Aslanides, John; Glaese, Amelia; McAleese, Nat & Irving, Geoffrey 2022. Red teaming language models with language models. In Goldberg, Yoav; Kozareva, Zornitsa & Zhang, Yue (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics. 3419-3448. <DOI: 10.18653/v1/2022.emnlp-main.225>.

Pesetsky, David 2024. Is there an LLM challenge for Linguistics? Or is there a Linguistics challenge for LLMs?. Paper presented at the Academia Română, Bucarest, 22 May 2024.

Petroni, Fabio; Rocktäschel, Tim; Riedel, Sebastian; Lewis, Patrick; Bakhtin, Anton; Wu, Yuxiang & Miller, Alexander 2019. Language models as knowledge bases? In Inui, Kentaro; Jiang, Jing; Ng, Vincent & Wan, Xiaojun (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*. Hong Kong, China: Association for Computational Linguistics. 2463-2473. <DOI: 10.18653/v1/D19-1250>.

Phillips, Colin 1996. *Order and structure*. PhD dissertation. Cambridge, MA: MIT Press.

Phillips, Colin 2003. Linear order and constituency. *Linguistic Inquiry* 34. 37-90.

Piantadosi, Steven T. 2023. Modern language models refute Chomsky's approach to language. <lingbuzz.net/lingbuzz/007180>.

Piantadosi, Steven T. 2024. Modern language models refute Chomsky's approach to language. In Gibson, Edward & Poliak, Moshe (eds.), *From*

fieldwork to linguistic theory: A tribute to Dan Everett. Berlin: Language Science Press. 353-414.

Pinker, Steven 1984. *Language Learnability and Language Development*. Cambridge, MA: Harvard University Press.

Plate, Tony A. 1994. *Holographic Reduced Representation*. Stanford: CSLI.

Plato 380 BCE. *Meno*.

Poggio, Thomas; Rifkin, Ryan; Niyogi, Partha & Mukherjee, Sayan 2004. General conditions for predictivity in learning theory. *Nature* 428. 419-422. <doi.org/10.1038/nature02341>.

Pollard, Carl & Sag, Ivan A. 1994. *Head-Driven Phrase Structure Grammar*. Chicago, IL: University of Chicago Press.

Pollock, Jean Yves 1989. Verb movement, universal grammar, and the structure of IP. *Linguistic Inquiry* 20.3. 365-424.

Popper, Karl 1934. *Logik der Forschung*. Berlin: Springer. <doi.org/10.1007/978-3-7091-4177-9>.

Prasanna, Sai; Rogers, Anna & Rumshisky, Anna 2020. When BERT plays the lottery, all tickets are winning. In Webber, Bonnie; Cohn, Trevor; He, Yulan & Liu, Yang (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Online: Association for Computational Linguistics. 3208-3229. <DOI: 10.18653/v1/2020.emnlp-main.259>.

Pullum, Geoffrey K. & Scholz, Barbara C. 2002. Empirical assessment of stimulus poverty arguments. *The Linguistic Review* 18.1-2. 9. <DOI: 10.1515/tlir.19.1-2.9>.

Purnell, Thomas; Idsardi, William & Baugh, John 1999. Perceptual and phonetic experiments on American English dialect identification. *Journal of Language and Social Psychology* 18.1. 10-30. <DOI: 10.1177/0261927X99018001002>.

Quine, Willard Van Orman 1960. *Word and Object*. Cambridge, MA: MIT Press. <doi.org/10.7551/mitpress/9636.001.0001>.

Quinlan, Philip T. (ed.) 2004. *Connectionist Models of Development* (0 ed.). Psychology Press. <doi.org/10.4324/9780203494028>.

Radford, Alec; Narasimhan, Karthik; Salimans, Tim; Sutskever, Ilya *et al.* 2018. *Improving language understanding by generative pre-training*.

Radford, Alec; Wu, Jeffrey; Amodei, Dario; Clark, Jack; Brundage, Miles & Sutskever, Ilya 2019a. Better language models and their implications [Blog post]. *OpenAI Research*. <openai.com/index/better-language-models>. Last accessed 24/02/2025.

Radford, Alec; Wu, Jeffrey; Child, Rewon; Luan, David; Amodei, Dario & Sutskever, Ilya 2019b. *Language Models Are Unsupervised Multitask Learners*. Technical report. San Francisco, CA: OpenAI.

Radford, Andrew 1997. *Syntax: A Minimalist Introduction*. Cambridge: Cambridge University Press.

Radford, Andrew 2016. *Analysing English Sentences, Second Edition*. Cambridge: Cambridge University Press.

Rafailov, Rafael; Sharma, Archit; Mitchell, Eric; Ermon, Stefano; Manning, Christopher D. & Finn, Chelsea 2023. Direct preference optimization: Your language model is secretly a reward model. In *ICLR 2023 Conference Track*. Kigali, Rwanda: OpenReview.

Raman, Raghu *et al.* 2024. Fake news research trends, linkages to generative artificial intelligence and sustainable development goals. *Helion* e24727. <DOI: 10.1016/j.heliyon.2024.e24727>.

Rasin, Ezer; Berger, Iddo; Lan, Nur; Shefi, Itamar & Katzir, Roni 2021. Approaching explanatory adequacy in phonology using minimum description length. *Journal of Language Modelling* 9,1. 17-66. <doi.org/10.15398/jlm.v9i1.266>.

Rawski, Jonathan & Heinz, Jeffrey 2019. No free lunch in linguistics or machine learning: Response to Pater. *Language* 95. 125-135.

Raymond, Louise & O'Reilly, Tim 1999. *The Cathedral and the Bazaar* (1st ed.). USA: O'Reilly & Associates, Inc.

Reinhart, Tanya 1976. *The syntactic domain of anaphora*. Cambridge, MA: MIT Press.

Retoré, Christian (ed.), *Logical Aspects of Computational Linguistics: Lecture Notes in Computer Science*. Berlin: Springer. 68-95.

Rickford, John R. & King, Sharese 2016. Language and linguistics on trial: Hearing Rachel Jeantel (and other vernacular speakers) in the courtroom and beyond. *Language* 92,4. 948-988.

Riesenhuber, Maximilian & Poggio, Tomaso 1999. Hierarchical models of object recognition in cortex. *Nature Neuroscience* 2,11. 1019-1025. <doi.org/10.1038/14819>.

Riezler, Stefan; Holloway King, Tracy; Kaplan, Ronald M.; Crouch, Richard; Maxwell, John T. III & Johnson, Mark 2002. Parsing the Wall Street Journal using a Lexical-Functional Grammar and discriminative estimation techniques. In *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*. Philadelphia: Association for Computational Linguistics. 271-278.

Rissanen, Jorma 1978. Modeling by shortest data description. *Automatica* 14,5. 465-471. <doi.org/10.1016/0005-1098(78)90005-5>.

Rissanen, Jorma 1987. Stochastic Complexity. *Journal of the Royal Statistical Society: Series B (Methodological)* 49,3. 223-239. <doi.org/10.1111/j.2517-6161.1987.tb01694.x>.

Ritter, Elizabeth & Wiltschko, Martina 2014. The composition of INFL. An exploration of tense, tenseless languages and tenseless constructions. *Natural Language and Linguistic Theory* 32. 1331-1386.

Ritter, Elizabeth 1991. Two functional categories in Noun Phrases: Evidence from Modern Hebrew. *Syntax and Semantics* 25.

Rizzi, Luigi 1990. *Relativized minimality*. Cambridge, MA: MIT Press.

Rizzi, Luigi 1997. The Fine Structure of the Left Periphery. In Haegeman, Liliane (ed.), *Elements of Grammar*. Dordrecht: Springer Netherlands. 281-337. <doi.org/10.1007/978-94-011-5420-8_7>.

Rizzi, Luigi (ed.) 2004. *The structure of CP and IP*. Oxford, UK: Oxford University Press.

Rizzi, Luigi 2013. Locality. *Lingua* 130. 169-186.

Rizzi, Luigi 2016. Labeling, maximality and the head-phrase distinction. *The Linguistic Review* 33.1. 103-127.

Rizzi, Luigi 2021. *Complexité des structures linguistiques, simplicité des mécanismes du langage*, Leçon inaugurale, 2021, Collège de France – Fayard, Paris. English translation: *Complexity of Linguistic Structures, Simplicity of Language Mechanisms* (2024). OpenEdition Books, Collège de France. <DOI: 10.4000/books.cdf.16006>.

Rizzi, Luigi & Cinque, Guglielmo 2016. Functional Categories and Syntactic Theory. *Annual Review of Linguistics* 2.1. 139-163. <doi.org/10.1146/annurev-linguistics-011415-040827>.

Rizzi, Luigi & Savoia, Leonardo 1993. Conditions on /u/ propagation in Southern Italian Dialects: A Locality Parameter for Phonosyntactic Processes. In Belletti, A. (ed.), *Syntactic Theory and the Dialects of Italy*. Turin: Rosenberg & Sellier.

Roberts, Ian 2017. The final-over-final condition in DP: Universal 20 and the nature of demonstratives. In Sheehan, Michelle; Biberauer, Theresa; Roberts, Ian & Holmberg, Anders (eds.), *The Final-over-Final Condition: A Syntactic Universal* (Vol. 76). Cambridge, MA: MIT Press. 151.

Roberts, Ian 2019. *Parameter Hierarchies and Universal Grammar* (1st ed.). Oxford, UK: Oxford University Press. <doi.org/10.1093/oso/9780198804635.001.0001>.

Rogers, Anna; Kovaleva, Olga & Rumshisky, Anna 2021. A primer in BERTology: What we know about how BERT works. *Transactions of the Association for Computational Linguistics* 8. 842-866.

Ross, John Robert 1967. *Constraints on variables in syntax*. Cambridge, MA: MIT Press.

Rumelhart, David E.; Hinton, Geoffrey E. & Williams, Ronald J. 1986. Learning representations by back-propagating errors. *Nature* 323,6088. 533-536. <DOI: 10.1038/323533a0>.

Rumelhart, David E. & McClelland, James L. 1986. On Learning the Past Tenses of English Verbs. In *Parallel Distributed Processing*. Cambridge, MA: MIT Press. <doi.org/10.7551/mitpress/5237.003.0008>.

Rumelhart, David E.; McClelland, James L. & PDP Research Group (eds.) 1999. *Parallel distributed processing. 1: Foundations*. 12th print. Cambridge, MA: MIT Press. <doi.org/10.7551/mitpress/5236.001.0001>.

Russell, Bertrand 1947. *Human Knowledge: Its Scope and Limits*. New York, NY: Simon and Schuster.

Sampson, Geoffrey 1997. *Educating Eve: The ‘language instinct’ debate*. London / Washington, DC: Cassell.

Sanh, Victor; Webson, Albert; Raffel, Colin; Bach, Stephen; Sutawika, Lintang; Alyafeai, Zaid; Chaffin, Antoine; Stiegler, Arnaud; Raja, Arun;

Dey, Manan *et al.* 2022. *Multitask prompted training enables zero-shot task generalization*. In *ICLR 2022 Conference Track*. Online: OpenReview.

Sarlin, Paul-Edouard; DeTone, Daniel; Malisiewicz, Tomasz & Rabinovich, Andrew 2020. Superglue: Learning feature matching with graph neural networks. <arxiv.org/abs/1911.11763>.

Sartran, Laurent; Barrett, Samuel; Kuncoro, Adhiguna; Stanojević, Miloš; Blunsom, Phil & Dyer, Chris 2022. Transformer Grammars: Augmenting Transformer Language Models with Syntactic Inductive Biases at Scale. *Transactions of the Association for Computational Linguistics* 10 (December). 1423-39. <doi.org/10.1162/tacl_a_00526>.

Sathish, Vishwas; Lin, Hannah; Kamath, Aditya K. & Nyayachavadi, Anish 2024. LLeMpower: Understanding disparities in the control and access of large language models. <[arXiv:2404.09356](https://arxiv.org/abs/2404.09356)>.

Savitch, Walter J. 1993. Why it might pay to assume that languages are infinite. *Annals of Mathematics and Artificial Intelligence* 8. 17-25.

Shannon, C. E. 1948. A mathematical theory of communication. *The Bell System Technical Journal* 27,3. 379-423. <DOI: [10.1002/j.1538-7305.1948.tb01338.x](https://doi.org/10.1002/j.1538-7305.1948.tb01338.x)>.

Shieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. *Linguistics and Philosophy* 8,3. 333-43. <doi.org/10.1007/BF00630917>.

Siegelman, Noam; Schroeder, Sascha; Acartürk, Cengiz; Ahn, Hee-Don; Alexeeva, Svetlana; Amenta, Simona; Bertram, Raymond; Bonandolini, R.; Brysbaert, M.; Chernova, D.; Da Fonseca, S. M.; Dirix, N.; Duyck, W.; Fella, A.; Frost, R.; Gattei, C. A.; Kalaitzi, A.; Kwon, N.; Lõo, K.; ... Kuperman, V. 2022. Expanding horizons of cross-linguistic research on reading: The Multilingual Eye-movement Corpus (MECO). *Behavior Research Methods* 54,6. 2843-2863. <doi.org/10.3758/s13428-021-01772-6>.

Smith, Nathaniel J. & Levy, Roger 2013. The effect of word predictability on reading time is logarithmic. *Cognition* 128,3. 302-319. <DOI: [10.1016/j.cognition.2013.02.013](https://doi.org/10.1016/j.cognition.2013.02.013)>.

Smolensky, Paul 1990. Tensor product variable binding and the representation of symbolic structures in connectionist systems. *Artificial Intelligence* 46. 159-216. <[doi.org/10.1016/0004-3702\(90\)90007-m](https://doi.org/10.1016/0004-3702(90)90007-m)>.

Solomonoff, Ray J. 1960. *A Preliminary Report on a General Theory of Inductive Inference*. United States Air Force, Office of Scientific Research. <books.google.it/books?id=SuTHtgAACAAJ>.

Spitale, Giovanni; Biller-Andorno, Nikola & Germani, Federico 2023. AI model GPT-3 (dis)informs us better than humans. *Science Advances* 9, 26. <DOI: [10.1126/sciadv.adh1850](https://doi.org/10.1126/sciadv.adh1850)>.

Sprouse, Jon & Almeida, Diogo 2017. Design sensitivity and statistical power in acceptability judgment experiments. *Glossa* 2,1. 1-32. <doi.org/10.5334/gjgl.236>.

Sprouse, Jon & Hornstein, Norbert (eds.) 2013. *Experimental Syntax and*

Island Effects (1st ed.). Cambridge University Press. <doi.org/10.1017/CBO9781139035309>.

Srivastava, Aarohi; Rastogi, Abhinav; Rao, Abhishek; Shoeb, Abu Awal Md; Abid, Abubakar; Fisch, Adam; Brown, Adam R.; Santoro, Adam; Gupta, Aditya; Garriga-Alonso, Adrià *et al.* 2023. *Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. Transactions on Machine Learning Research*.

Stabler, Edward 1991. Avoid the pedestrian's paradox. In Berwick, Robert C.; Abney, Steven P. & Tenny, Carol (eds.), *Principle-based Parsing: Computation and Psycholinguistics*. Dordrecht: Kluwer. 199-238. <doi.org/10.1007/978-94-011-3474-3_8>.

Stabler, Edward 1997. Derivational minimalism. In Retoré, Christian (ed.), *Logical Aspects of Computational Linguistics*. Berlin / Heidelberg: Springer. 68-95.

Stabler, Edward 2011. Computational Perspectives on Minimalism. In Boeckx, Cedric (ed.), *The Oxford Handbook of Linguistic Minimalism*. Oxford, UK: Oxford University Press. <doi.org/10.1093/oxfordhb/9780199549368.013.0027>.

Stabler, Edward 2013. Two Models of Minimalist, Incremental Syntactic Analysis. *Topics in Cognitive Science* 5,3. 611-633. <doi.org/10.1111/tops.12031>.

Starke, Michal 2001. *Move Dissolves into Merge: A Theory of Locality*. PhD dissertation. Université de Genève.

Steedman, Mark & Baldridge, Jason 2006. Combinatory categorial grammar. In Brown, Keith (ed.), *Encyclopedia of Language & Linguistics*. 2nd edition. Oxford: Elsevier. 610-621.

Steuer, Julius; Mosbach, Marius & Klakow, Dietrich 2023. Large GPT-like Models are Bad Babies: A Closer Look at the Relationship between Linguistic Competence and Psycholinguistic Measures. *Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning*. Singapore: Association for Computational Linguistics. 114-129. <doi.org/10.18653/v1/2023.conll-babylm.12>.

Stowe, Laurie A.; Kaan, Edith; Sabourin, Laura & Taylor, Ryan C. 2018. The sentence wrap-up dogma. *Cognition* 176. 232-247. <doi.org/10.1016/j.cognition.2018.03.011>.

Strubell, Emma; Ganesh, Ananya & McCallum, Andrew 2019. Energy and policy considerations for deep learning in NLP. In Korhonen, Anna; Traum, David & Màrquez, Lluís (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. Florence, Italy: Association for Computational Linguistics. 3645-3650. <DOI: 10.18653/v1/P19-1355>.

Sulger, Sebastian; Butt, Miriam; Holloway King, Tracy; Meurer, Paul; Laczkó, Tibor; Rákosi, György; Bamba Dione, Cheikh M.; Dyvik, Helge; Rosén, Victoria; De Smedt, Koenraad; Patejuk, Agnieszka; Çetinoglu, Özlem; Arka, I Wayan & Mistica, Meladel 2013. ParGramBank: The

ParGram parallel treebank. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics*, vol. 1. Sofia: Association for Computational Linguistics. 550-560. <www.aclweb.org/anthology/P13-1054.pdf>.

Sutton, Rich 2019. The bitter lesson [Blog post]. *Incomplete Ideas*. <www.incompleteideas.net/IncIdeas/BitterLesson.html>. Last accessed 24/02/2025.

Svenonius, Peter 2016. Significant mid-level results of generative linguistics. <blogg.uit.no/psv000/2016/08/30/significant-mid-level-results-of-generative-linguistics>.

Swanson, Logan 2024. Syntactic learning over tree tiers. In *Proceedings of ESSLLI 2024*. 187-196.

Taylor, Wilson L. 1953. “Cloze Procedure”: A New Tool for Measuring Readability. *Journalism Quarterly* 30,4. 415-433. <doi.org/10.1177/107769905303000401>.

Torr, John 2017. Autobank: A semi-automatic annotation tool for developing deep Minimalist grammar treebanks. In *Proceedings of the demonstrations at the 15th conference of the European chapter of the Association for Computational Linguistics*. 81-86.

Torr, John 2018. Constraining MGbank: Agreement, L-selection and supertagging in minimalist grammars. In Gurevych, Iryna & Miyao, Yusuke (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. Melbourne, Australia: Association for Computational Linguistics. 590-600. <DOI: 10.18653/v1/P18-1055>.

Torres, Charles & Futrell, Richard 2023. Simpler neural networks prefer sub-regular languages. In *Findings of the association for computational linguistics: EMNLP 2023*. 1651-1661.

Torres, Charles; Hanson, Kenneth; Graf, Thomas & Mayer, Connor 2023. Modeling island effects with probabilistic tier-based strictly local grammars over trees. In *Proceedings of the Society for Computation in Linguistics (SCI) 2023*. 155-164. <doi.org/10.7275/nz4q-6b09>.

Tran, Tu-Anh & Miyao, Yusuke 2022. Development of a multilingual CCG treebank via Universal Dependencies conversion. In Calzolari, Nicoletta; Béchet, Frédéric; Blache, Philippe; Choukri, Khalid; Cieri, Christopher; Declerck, Thierry; Goggi, Sara; Isahara, Hitoshi; Maegaard, Bente; Mariani, Joseph et al. (eds.), *Proceedings of the Thirteenth Language Resources and Evaluation Conference*. Marseille, France: European Language Resources Association. 5220-5233.

Trinh, Trieu H. & Le, Quoc V. 2019. A simple method for commonsense reasoning. <[arXiv:1806.02847](https://arxiv.org/abs/1806.02847)>.

Trotta, Daniela; Guarasci, Raffaele; Leonardelli, Elisa & Tonelli, Sara 2021. Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus. *Findings of the Association for Computational Linguistics: EMNLP 2021*. Punta Cana, Dominican Republic: Association for Computational Linguistics. 2929-2940. <doi.org/10.18653/v1/2021-fnlp-027>.

v1/2021.findings-emnlp.250>.

Turing, Alan M. 1937. Computability and λ -definability. *Journal of Symbolic Logic* 2. 153-163. <doi.org/10.2307/2268280>.

Turing, Alan 1950. Computing machinery and intelligence. *Mind* 59. 433-460. <DOI: 10.1093/mind/lix.236.433>.

van Fraassen, Bas C. 1980. *The Scientific Image*. Oxford: Oxford University Press. 97-157.

van Riemsdijk, Henk & Williams, Edwin 1986. *Introduction to the Theory of Grammar*. Cambridge, MA: MIT Press.

van Rooij, Iris; Guest, Olivia; Adolfi, Federico; de Haan, Ronald; Kolokova, Antonina & Rich, Patricia 2024. Reclaiming AI as a theoretical tool for cognitive science. *Computational Brain and Behaviour*.

Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.; Kaiser, Lukasz & Polosukhin, Illia 2017. Attention Is All You Need. In Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S. & Garnett, R. (eds.), *Advances in Neural Information Processing Systems 30 (NIPS 2017)*. Long Beach, CA: Curran Associates, Inc. 5998-6008. <arxiv.org/abs/1706.03762>.

Vermeerbergen, Myriam; Leeson, Lorraine & Crasborn, Onno Alex (eds.) 2007. *Simultaneity in signed languages: Form and function*. Amsterdam: John Benjamins.

Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M. et al. 2013. The CNRM-CM5.1 global climate model: Description and basic evaluation. *Climate Dynamics* 40.9. 2091-2121. <DOI: 10.1007/s00382-011-1259-y>.

von Humboldt, Wilhelm 1836. *Über die Verschiedenheit des menschlichen Sprachbaues und ihren Einfluß auf die geistige Entwicklung des Menschengeschlechts*. Berlin, Prussia: Druckerei der Königlichen Akademie der Wissenschaften.

Wadler, Philip 1990. Deforestation: Transforming programs to eliminate trees. *Theoretical Computer Science* 73. 231-248. <doi.org/10.1016/0304-3975(90)90147-A>.

Warstadt, Alex & Bowman, Samuel R. 2022. What artificial neural networks can tell us about human language acquisition. In Lappin, Shalom & Bernardy, Jean-Phillipe (eds.), *Algebraic Structures in Natural Language*. Boca Raton: CRC Press, Taylor & Francis. 17-60.

Warstadt, Alex; Mueller, Aaron; Choshen, Leshem; Wilcox, Ethan; Zhuang, Chengxu; Ciro, Juan; Mosquera, Rafael; Paranjape, B.; Williams, A.; Linzen, T. & Cotterell, R. 2023. Findings of the BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora. *Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning*. Singapore: Association for Computational Linguistics. 1-6. <doi.org/10.18653/v1/2023.conll-babylm.1>.

Warstadt, Alex; Parrish, Alicia; Liu, Haokun; Mohananey, Anhad; Peng, Wei; Wang, Sheng-Fu & Bowman, Samuel R. 2020. BLiMP: The

Benchmark of Linguistic Minimal Pairs for English. *Transactions of the Association for Computational Linguistics* 8. 377-392. <doi.org/10.1162/tacl_a_00321>.

Warstadt, Alex; Singh, Amanpreet & Bowman, Samuel R. 2018. Neural Network Acceptability Judgments. <[arXiv:1805.12471](https://arxiv.org/abs/1805.12471)>.

Warstadt, Alex; Singh, Amanpreet & Bowman, Samuel R. 2019. Neural network acceptability judgments. *Transactions of the Association for Computational Linguistics* 7. 625-641. <aclanthology.org/Q19-1040>.

Warstadt, Alex; Zhang, Yian; Li, Xiaocheng; Liu, Haokun & Bowman, Samuel R. 2020. Learning Which Features Matter: RoBERTa Acquires a Preference for Linguistic Generalizations (Eventually). *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 217-235. <doi.org/10.18653/v1/2020.emnlp-main.16>. <aclanthology.org/2020.emnlp-main.16>.

Waskan, Jonathan; Harmon, Ian; Horne, Zachary; Spino, Joseph & Clevenger, John 2014. Explanatory anti-psychologism overturned by lay and scientific case classifications. *Synthese* 191,5. 1013-1035. <DOI: 10.1007/s11229-013-0304-2>.

Wei, Jason; Bosma, Maarten; Zhao, Vincent; Guu, Kelvin; Yu, Adams Wei; Lester, Brian; Du, Nan; Dai, Andrew M. & Le, Quoc V. 2022a. Finetuned language models are zero-shot learners. In *ICLR 2022 Conference Track*. Online: OpenReview

Wei, Jason; Wang, Xuezhi; Schuurmans, Dale; Bosma, Maarten; Ichter, Brian; Xia, Fei; Chi, Ed; Le, Quoc V. & Zhou, Denny 2022b. Chain-of-thought prompting elicits reasoning in large language models. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K. & Oh, A. (eds.), *Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track*. New Orleans, LA: Curran Associates, Inc. 24824-24837.

Wexler, Kenneth & Culicover, Peter W. 1980. *Formal Principles of Language Acquisition*. Cambridge, MA: MIT Press.

Wickelgren, Wayne A. 1969. Context-Sensitive Coding in Speech Recognition, Articulation and Developments. In *Information Processing in The Nervous System: Proceedings of a Symposium Held at the State University of New York at Buffalo 21st-24th October, 1968*. Springer. 85-96.

Wilcox, Ethan; Futrell, Richard & Levy, Roger 2024. Using Computational Models to Test Syntactic Learnability. *Linguistic Inquiry*. 55,4. 805-848. <doi.org/10.1162/ling_a_00491>.

Wilcox, Ethan; Gauthier, Jon; Hu, Jennifer; Qian, Peng & Levy, Roger 2020. On the predictive power of neural language models for human real-time comprehension behavior. In *Proceedings of the Annual Meeting of the Cognitive Science Society*. Online: eScholarship.

Wilcox, Ethan; Levy, Roger; Morita, Takashi & Futrell, Richard 2018. What do RNN Language Models Learn about Filler-Gap Dependencies? In

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels: ACL. 211-221. <arxiv.org/abs/1809.00042>.

Wilkenfeld, Daniel A. 2014. Functional explaining: A new approach to the philosophy of explanation. *Synthese* 191,14. 3367-3391. <DOI: 10.1007/s11229-014-0452-z>.

Wilkenfeld, Daniel A. & Lombrozo, Tania 2020. Explanation classification depends on understanding: Extending the epistemic side-effect effect. *Synthese* 197,6. 2565-2592.

Wilkinson, Mark D.; Dumontier, Michel; Aalbersberg, IJsbrand Jan; Appleton, Gabrielle; Axton, Myles; Baak, Arie; Blomberg, Niklas *et al.* 2016. The FAIR Guiding Principles for Scientific Data Management and Stewardship. *Scientific Data* 3,1. 160018. <doi.org/10.1038/sdata.2016.18>.

Williams, Edwin S. 1977. Discourse and Logical Form. *Linguistic Inquiry* 8,1. 101-139.

Wiltschko, Martina 2008. The syntax of non-inflectional plural marking. *Natural Language and Linguistic Theory* 26,3. 639-694.

Wiltschko, Martina 2014. *The universal structure of categories. Towards a formal typology.* Cambridge: Cambridge University Press.

Wiltschko, Martina 2018. Discovering syntactic variation. In Hornstein, N.; Lasnik, H.; Patel-Grosz, P. & Yang, Ch. (eds.), *Syntactic Structures after 60 Years. The Impact of the Chomskyan Revolution in Linguistics. Studies in Generative Grammar [SGG]* 129. 427-460.

Wiltschko, Martina 2021a. *The grammar of interactional language.* Cambridge: Cambridge University Press.

Wiltschko, Martina 2021b. Universal underpinnings of language-specific categories. A useful heuristic for discovering and comparing categories of grammar and beyond. In Alfieri, Luca; Ramat, Paolo & Arcodia, Giorgio Francesco (eds.), *Linguistic Categories, Language Description and Linguistic Typology*. 59-99.

Wiltschko, Martina 2022. Language is for thought and communication. *Glossa: A Journal of General Linguistics* 7,1. <doi.org/10.16995/glossa.5786>.

Wiltschko, Martina & Heim, Johannes 2016. The syntax of confirmationals. A neo-performative analysis. In Kaltenböck, Gunther; Keizer, Evelien & Lohmann, Arne (eds.), *Outside the Clause. Form and function of extra-clausal constituent.* John Benjamins. 303-340.

Wiltschko, Martina & Heim, Johannes 2020. Grounding Beliefs: Structured Variation in Canadian English Discourse Particles. In Achiri-Taboh, B. (ed.), *Exoticism in English tag questions: Strengthening arguments and caressing the social wheel.* Cambridge: Cambridge Scholars Publishing.

Yang, Andy; Chiang, David & Angluin, Dana 2024. Masked hard-attention transformers recognize exactly the star-free languages. In Globerson, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tomczak, J. &

Zhang, C. (eds.), *Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track*. Vancouver, BC, Canada: Curran Associates, Inc. 10202-10235.

Yang, Charles D. 2016. *The price of linguistic productivity: How children learn to break the rules of language*. Cambridge, MA: MIT Press.

Yang, Yuan & Piantadosi, Steven T. 2022. One model for the learning of language. *Proceedings of the National Academy of Sciences* 119,5. e2021865119. <doi.org/10.1073/pnas.2021865119>.

Yi, Sanghyun; Goel, Rahul; Khatri, Chandra; Cervone, Alessandra; Chung, Tagyoung; Hedayatnia, Behnam; Venkatesh, Anu; Gabriel, Raefer & Hakkani-Tur, Dilek 2019. Towards coherent and engaging spoken dialog response generation using automatic conversation evaluators. In van Deemter, Kees; Lin, Chenghua & Takamura, Hiroya (eds.), *Proceedings of the 12th International Conference on Natural Language Generation*. Tokyo, Japan: Association for Computational Linguistics. 65-75. <DOI: 10.18653/v1/W19-8608>.

Zhang, Chiyuan; Bengio, Samy; Hardt, Mortiz; Recht, Benjamin & Vinyals, Oriol 2021. Understanding deep learning (still) requires rethinking generalization. *Communications of the ACM* 64. 107-115. <doi.org/10.1145/3446776>.

Zhang, Yian; Warstadt, Alex; Li, Haau-Sing & Bowman, Samuel R. 2021. When Do You Need Billions of Words of Pretraining Data? In Zong, Chengqing; Xia, Fei; Li, Wenjie & Navigli, Roberto (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Vol. 1*. Online: Association for Computational Linguistics. 1112-1125. <DOI: 10.18653/v1/2021.acl-long.90>. <arxiv.org/abs/2011.04946> (2020).

Zhao, M.; Golaz, J. C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J. H.; Chen, X.; Donner, L. J.; Dunne, J. P. et al. 2018a. The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. *Journal of Advances in Modeling Earth Systems* 10,3. 691-734. <DOI: 10.1002/2017MS001208>.

Zhao, M.; Golaz, J. C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J. H.; Chen, X.; Donner, L. J.; Dunne, J. P. et al. 2018b. The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. *Journal of Advances in Modeling Earth Systems* 10,3. 735-769. <DOI: 10.1002/2017MS001209>.

Zymla, Mark-Matthias 2024. Ambiguity management in computational Glue semantics. In Butt, Miriam; Findlay, Jamie & Toivonen, Ida (eds.), *Proceedings of the LFG'24 Conference*. Konstanz: PubliKon. 285-310. <lfg-proceedings.org/lfg/index.php/main/article/view/59>.

Printed in June 2025
by Industrie Grafiche Pacini Editore Srl
Via A. Gherardesca • 56121 Ospedaletto • Pisa • Italy
Tel. +39 050 313011 • Fax +39 050 3130300
www.pacinieditore.it

