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Are there certain core beliefs of generative grammar that are fatally undermined 
by the recent successes of Large Language Models and the unsupervised learn-
ing that trains them? Do Large Language Models then constitute a rival (and 
superior) ‘theory’ that can and should take over now from (all) previous theories 
in pushing the science forward? In this short article, I argue that the answer 
to both these questions is ‘no’. On the positive side, I make an urgent case for 
maintaining theory at the centre of the new era of linguistic science, and for 
generative grammar to expand its energies into theorizing the link between 
competence and various aspects of performance in order to shore up its claims to 
explanatory adequacy. 
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1. Introduction

The recent rise of Large Language Models (LLMs) as foundation 
models for a wide variety of artificial intelligence applications has led 
many to predict the end of the world ‘as we know it’. Many of our old 
certainties are set to change in the wake of these new advances: the 
value and marketability of different kinds of labour and expertise (with 
its knock-on effects for education); improved pattern discovery tools 
for scientific and medical applications; threats to the reliability of our 
information ecosystems, with the global instability that can give rise to; 
the exacerbation of global inequalities in an era where a small number 
of stakeholders control access to the new technology and profit from it, 
while a large number will suffer from its energy requirements. To this 
dystopian list, we apparently need to add the demise of theoretical lin-
guistics (or ‘generative’ linguistics as Chesi puts it) ‘as we know it’. As 
a generative linguist myself, I must confess I am much less worried for 
my field than I am about the planet more generally, but I welcome the 
opportunity to revisit the deep and fascinating questions that inform 
the scientific study of language systems and their natural embedding 
in human cognition in the light of these recent developments in natural 
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language processing models. The title of Chesi’s (this issue) contribution 
that I am responding to alludes to the ‘the end of generative grammar 
as we know it’, and so in my own response I feel obliged to address the 
specific elements of that research program that have been claimed to 
have been refuted. For this reason, I will also respond to the particular 
claims in Piantadosi (2024) as part of my response to Chesi’s own assess-
ment. In the second half of this article, I will return to address Chesi’s 
own main focus as I see it, which is the diagnosis of what generative 
grammar needs to do to forestall its alleged ‘irrelevance’ in the modern 
era.

So, what characterizes generative grammar as a field of inquiry, 
and what would it mean for it to be over? Chesi (this issue) does not 
define what he means by ‘generative grammar’ directly, calling it only 
‘a prototypical theoretical perspective on language’. The general thrust 
of his critique is that generative grammar needs to get its act together 
in terms of developing more precise and rigorous formulations of its 
model, which in turn would allow it to participate in the joint enterprise 
of evaluating its descriptive adequacy against a standardized dataset, 
comparing it with the LLMs that Piantadosi (2024) claims also count as 
‘genuine theories of language’. Piantadosi’s own position seems to be 
more foundationally critical, asserting directly that LLMs ‘refute’ certain 
core principles of generative grammar (or rather, Chomsky’s general 
approach to grammar). While Chesi is more circumspect here, the gen-
eral thrust of his critique is that generative grammar needs to clean up 
its act as a theory, or risk becoming obsolete.

There are two issues that I want to address separately in this 
response article: (i) Are there certain core beliefs of generative gram-
mar that are fatally undermined by the recent successes of LLMs and 
the unsupervised learning that trains them? (ii) Do LLMs then constitute 
a rival (and superior) ‘theory’ that can and should take over now from 
(all) previous theories in pushing the science forward?

2. What is ‘Chomsky’s approach’, and how will I know when it has been 
refuted?

I first remind the reader that ‘Chomsky’s approach’ to grammar and 
‘Generative Linguistics’ should not be considered the same thing. Chesi 
criticizes minimalism in particular for not being sufficiently precisely 
and consistently formalized to generate the kinds of predictions required 
for a theory (with the exception of Stabler 1997, Collins & Stabler 
2016). But other branches of generative grammar such as LFG and HPSG 
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have a long history of being tightly controlled and formalized and have 
always gone hand in hand with work in computational linguistics. So 
criticizing minimalism should not be considered a criticism of genera-
tive linguistics as a whole. Maybe Chesi, like Piantadosi (2024), actually 
just means ‘Chomskian approaches’ here. In the next section, I take a 
look at a number of the ideas that might be considered to be criterial of 
‘Chomskian’ approaches in this sense, to assess whether or not they have 
been refuted by the success of LLMs.

2.1. Innateness
What then defines the generative linguistics school of scientific 

endeavour? <thoughtco.com> says it is the idea that all humans are 
born with an innate capacity for language. Nativism therefore seems to 
be a good candidate for a principle that characterizes generative gram-
mar in the minds of those who consider it to have been debunked. In 
Piantadosi (2024), the list of ‘refutations’ contributed by the success of 
LLMs includes the idea ‘Hierarchical structure need not be innate’.

In fact, it is widely acknowledged that the concept of innateness is 
far more complex and subtle than this simple characterization suggests, 
and in ways that undercut the usefulness of trying to use it as a deciding 
ideological commitment to separate scientific schools of thought. Firstly, 
acknowledging the reality of an innate contribution is compatible with 
many different frameworks and positions. In Rethinking Innateness, Bates 
et al. (1996) point out that no scientist working on questions involv-
ing nature/nurture balance thinks that there is a simple relationship 
between genes and phenotype, and so it is increasingly difficult to draw 
the line between the kind of information contributed by the genome and 
that contributed by the developmental environment. Secondly, the kind 
of information that could be considered part of genetic endowment can 
also be quite abstract – in addition to being genetically hardwired to 
know certain things or perform certain behaviours, we could also pos-
sess genetic information that gives rise to the timing of certain develop-
mental stages affecting rate and strategies for learning itself, the gross 
anatomy of certain brain regions and how they interact developmentally 
etc. Given what we currently know about brain plasticity and learning 
in humans, it is highly implausible that the kind of ‘representational 
innateness’ for language-specific principles that people may first think 
of when hearing the terms ‘Universal Grammar’ (UG) or ‘the Language 
Acquisition Device’ could be the case. Moreover, Chomsky himself, pos-
sibly in response to science’s improving understanding of brain, genes 
and development, moved away from a crude kind of representational 
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innateness in the old fashioned sense, to one that is much more minimal 
(Hauser et al. 2002). The more modern claim is that human minds have 
an innate capacity for recursion and that this allows hierarchical syntac-
tic structures to emerge as a solution to the problem of language acquisi-
tion. 

This is a far cry from the idea of UG as a templatic blueprint of 
abstract structures and rules given innately, in advance of any linguis-
tic experience. I do not personally know of (many) working generative 
syntacticians who believe in that early simplistic version of UG. In short, 
the idea that hierarchical representations do not have to be innately giv-
en as ‘representations’ contradicts nothing in minimalist theorizing, and 
nor does it contradict the idea that there is some aspect of our genetic 
endowment that makes language possible in humans, an idea conceded 
already by the connectionist tradition in Bates et al. (1996).

2.2. A note on poverty of the stimulus
To what extent does language data in principle furnish enough 

information for the learner to infer the system that generates it? The 
lesson from LLMs and the transformer architecture seems to be that if 
a large enough data set is provided to the learner, then it appears that 
the distributional properties of language tokens provide enough implicit 
information to allow the model to infer the correct hidden layers of 
structure to perform correctly on a text generating task. Of course, a 
huge amount of data is required to achieve this feat, so the second rel-
evant question here is whether this fact about LLMs at all defuses the 
poverty of the stimulus argument as it applies to actual human chil-
dren. Children learn grammar from far less input than this, and also in 
a rather different kind of context, and motivated by a different kind of 
holistic ‘task’. We know that humans do engage in predictive processing, 
but the driving force behind language learning for the child is not plau-
sibly a game to guess what word is coming next, or indeed to figure out 
which sentences are grammatical or not. The child’s ‘task’ is more likely 
to be the drive to understand the content and emotional value of what 
is being said to them, to predict the macro behaviour of other humans, 
and to acquire the toolbox to communicate in return. And for that chil-
dren have a additional information coming from the context and shared 
experience of the world with their interlocutor. They also bring some 
things to the task including independent domain general facts about 
their own shared cognition with the speakers of the language they are 
learning, as well as possibly certain analytic and learning biases built in 
to their developing cognitive systems. So, is there enough information 
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coming from the incoming signal to acquire the system the child is faced 
with, or do we need to take account of cognitive and learning biases? 
To my mind it is a fascinating and still open question understanding 
how a child achieves this feat. But it is equally clear to me that the cur-
rent evidence from the behaviour of LLMs does not advance our under-
standing of the question either way. Concerning the training algorithms 
themselves, it is widely acknowledged that the back propagation train-
ing algorithms that LLMs use are very different from human learning in 
rather deep ways (Hinton 2022, Evanson et al. 2023), and so cannot be 
considered good models for human learning, even independently of the 
huge disparities in data size required to achieve the same results.

2.3. The relation between syntax and semantics
Another place where Piantadosi (2024) claims that LLMs refute a 

basic principle of Chomsky-inspired grammar lies in the relationship 
between syntax and semantics. The claim is that in the training data 
(and in the model that is built in response to it), syntactic and seman-
tic information are ‘integrated’ and cannot meaningfully be separated. 
This supposedly contradicts Chomsky’s view on the autonomy of syntax. 
I must confess that I am not sure I understand the point that is being 
made here. Nobody would deny that the language that the child is faced 
with is a combination of syntactic and semantic properties; the data that 
an LLM is trained on is the same, because it is just language, the same 
as for the child. Nevertheless, the model learns syntactic generalizations 
from this input, where nobody has given it the meta-information con-
cerning how to separate the syntax from the semantics in principle. But 
this once again is the same for the child. The ‘integration’ of syntax and 
semantics which forms the ‘refutation’ here must lie in the implicit anal-
ysis or model that the LLM ends up embodying. While it is well known 
that inspection of the detailed representations of these models is quite 
difficult in principle (because of the ‘black box’ nature of the system), 
Piantadosi admits (and even elsewhere makes a virtue of the fact that) 
these models do seem to end up inferring syntactic generalizations, rep-
resenting sentences hierarchically, implicitly characterizing word class 
membership, and tracking long distance dependencies. In other words, 
LLMs do end up representing syntactic information as a result of their 
training (Manning et al. 2020, Futrell et al. 2019, Linzen & Baroni 2021), 
even though they were not told to look for syntactic generalizations 
in advance, and even though the information is hopelessly entangled 
with semantics in the form of the distributional properties of linguistic 
tokens. In particular, they also seem to organize information in a way 
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that is similar to tree structures (Manning et al. 2020), and the extent to 
which this is true even predicts the model’s performance on generaliza-
tion (Murty et al. 2022). The models do well, in addition, on function 
words (Kim et al. 2019, and filler-gap dependencies (Wilcox et al. 2018).

I do in fact think there is something interesting and remarkable 
about what these models achieve. Recall that the task that the LLMs 
are set in training is to ‘predict’ the next token, and they are constantly 
given positive and negative feedback on that task and undergo mind 
bogglingly gargantuan amounts of training on it. They are allowed to 
use any information they can to help them succeed at the task, and they 
come to the conclusion that they can predict better if they start to clas-
sify words into classes, and build a syntax around them, in addition to 
the more fine grained lexical distributional statistics. So LLMs figure out 
for themselves in some sense that Chomsky is right – general statistics 
between words is not enough, they must also infer and build in hidden 
syntactic structure to do a good job on this prediction task!

Piantadosi thinks that it is obvious that syntax and semantics are 
not separated in the model’s analysis, but no-one has convincingly 
shown that they can simply and reliably inspect what is in these mod-
els’ analysis (which is why e.g. BERTology is its own distinct industry 
and object of inquiry – Rogers et al. 2021). In seeming contradiction 
with the above point, when discussing the problem of the (inhumanly) 
huge amounts of training data required to achieve appropriate linguistic 
behaviours, Piantadosi informs us that the syntactic part of LLM com-
petence is reached with much less data, with semantics and real world 
knowledge being the data-guzzling culprits, suggesting that “syntactic 
knowledge requires a small number of bits of information, especially 
when compared to semantics (Mollica & Piantadosi 2019)”. It sounds 
to me as though the different components of the model’s knowledge are 
being (at least implicitly) separated here by Piantadosi at the acquisi-
tional and implementational level.

In this discussion, Piantadosi also makes some non-standard 
assumptions about what semantics is. For him, ‘semantics’ is being prox-
ied by the distributional properties of individual words and tokens of the 
language. But if there is one thing we know about LLMs it is that they 
have no mapping between the tokens of language and anything at all 
that exists ‘outside language’. They, in other words, have no concept of 
denotation, reference or truth in the mapping to a world outside of the 
language-internal system of dependencies and relations. This mapping to 
an external reality is what most semanticists would define as semantics, 
and this is in fact the conception of semantics that Chomsky was most 
keen to excise from syntax in his autonomy of syntax thesis (Chomsky 
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1995b). Now, for LLMs, it turns out that not having semantics in the 
referential sense (or embodied cognition, or shared attention, or commu-
nicative urges) is absolutely no impediment at all to acquiring the ability 
to produce grammatically acceptable and appropriate sentences! So once 
again, it seems to me that the lesson of learning in LLMs shows us that 
Semantics (with a capital S, in the semanticists’ sense) is not necessary 
in order to acquire syntax, thus confirming Chomsky’s point rather than 
refuting it. 

3. Do LLMs constitute a theory of grammar?

Piantadosi claims that LLMs are a theory of grammar, and Chesi 
implicitly agrees with this position at least to the degree that he thinks 
that minimalist proposals should be assessed side by side with them on 
commonly agreed benchmarks. Ambridge & Blything (2024) claim LLMs 
do better than theoreticians on all the jobs that grammatical theory was 
supposed to do. Müller (2024) on the other hand disagrees, arguing that 
LLMs are not theories in the same sense at all. That paper argues that an 
LLM is a successful piece of engineering that matches the patterns in the 
corpus of textual data it is fed, but is not a theory. Specifically, it argues 
that LLMs are not just a different theory, or a wrong theory, they are not 
theories at all. Why the disagreement?

Here it is instructive to look at Piantadosi’s own justification of the 
status of LLMs as theory in the form of his own illustrative analogy. How 
does the model create a theory by setting parameters? Piantadosi asks 
us to imagine a situation where physicists might for example be uncer-
tain about whether gravitational force falls off as an inverse function of 
distance r, or of the square of r. We could imagine them constructing a 
super equation for gravitational force F which has a constant α whose 
value between zero and 1 represents the effect of the two different char-
acterizations of the situation as in (1). If α is zero then the equation 
reduces to a function where 1/r2 is the correct determinant, whereas 
when α is 1, the equation reduces to one where only 1/r is the determi-
nant.

(1)	 F(r, α) = α . 1/r + (1 - α) . 1/r2

So now the job of the model is to inspect the data and select the 
value of the parameter α that maximizes the likelihood of getting the 
correct (i.e. matching with reality) answer. So in this case, inferring a 
parameter in this equation is tantamount to evaluating distinct theories 
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against the data and coming up with the preferred one. So is this what 
LLMs are doing as well when they are setting their billions of parameters 
in response to the data? Almost. Piantadosi admits that in this case, 
we do not give the model a specific super equation in advance like (1), 
which embodies distinct theoretical proposals. Instead, there are some 
‘natural bases’ or starting points, for which you can set parameters that 
will allow you to approximate essentially any computational theo-
ry. As Piantadosi puts it “Parameter fitting in these models is effectively 
searching over a huge space of possible theories to see which one works 
best, in a well-defined, quantitative sense.”

And here is the crux of the matter. Because of these universal natu-
ral bases, you do not need to have a theory, or even a hunch, or a specif-
ic question to ask the oracle when you set one of these neural nets loose 
on the data. It is a well known proof about these kinds of neural nets 
that they are capable of approximating to any degree of precision, any 
function that is in principle computable no matter what it is (Cybenko 
1989). So if the training algorithm is sound and the data contains the 
right information, then the neural net will end up mimicking the input 
data to an arbitrary degree of precision. And here is the other thing. 
You cannot at that point go back into the model and reconstitute which 
particular equation or hypothesis was being piecemeal approximated 
by its elaborate parameter settings. It would be as if your machine was 
capable of correctly predicting the value for gravitational force when fed 
with distance information, but you would have no way of figuring out 
post hoc what the equation was! I quote from Piantadosi again lest I be 
accused of unwarranted negativity “In fact, we don’t deeply understand 
how the representations these models create work (see Rogers et al. 
2021). It is a nontrivial scientific program to discover how their internal 
states relate to each other and to successful prediction.”

Collins (2024) is the only response on the topic that I have seen 
that makes this point most clearly and trenchantly. He argues that LLMs 
are not theories because they can represent any complex relationship, 
and they represent them all in essentially the same kind of way. So it 
is no good inspecting the representations arrived at by these LLMs for 
theoretical insight into the workings of language (even if that were easy 
to do), because the LLM representations work by piecemeal approxima-
tion and flatten out any computational specificities inherent in the thing 
being approximated. If we want the physicists’ equivalent of the equa-
tion for gravitational force, we are going to have to come up with it 
ourselves via human scientific theorizing and explicit hypothesis testing. 
It is possible that what Piantadosi and others are claiming here is that 
LLMs prove that humans themselves could also be just ‘universal approx-
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imation machines’, in which case the human child is just a supreme 
pattern matcher who will learn whatever language they are exposed 
to. This seems unlikely for a number of reasons. Firstly, it underplays 
the fact that children (and humans in general) are quite a bit worse at 
the sorts of computations that LLMs seem to excel at especially when it 
comes to seeing patterns in extremely large amounts of complex data. 
Secondly, in concentrating on the text prediction task, it misses the fact 
that human minds ‘created’ language systems (in all locations where 
humans can be found) in the first place, with a world-language relation-
ship in mind. We would get no explanation of this phenomenon simply 
by asserting that the human brain is a massive approximating machine 
capable of imitating patterns it is exposed to in the form of disembodied 
language. In Müller (2024), another of the points raised is that studying 
LLMs trained on particular languages is unlikely to give us any purchase 
on crosslinguistic similarities and variation that exist. This is because 
comparative information of this kind is simply not extractable in a way 
that we as scientists can make sense of or interpret at a higher level. 
It is unclear therefore, what we gain from our marvellous engineer-
ing successes, other than a monetizable object for capitalism to chomp 
on. In terms of the kind of tangible, symbolically expressed theory that 
humans need in order to extend and generalize understanding into other 
domains, we do not seem to be able to extract something of that level 
from the LLMs we have created. The existence of SyntaxGym1 provides 
a useful set of cross-model benchmarks. But it does not mean that the 
things being compared are all ‘theories’ in the same sense.

There are of course differences among different LLMs and how well 
they perform, but in general it appears that the differences between dif-
ferent neural networks come from the interplay between the nature of 
the training algorithms and the data they are being fed (Collins 2024). 
We could make a study of those systems and algorithms, but it since we 
already know there are deep differences between us and the neural nets 
in both the learning strategies and data exposure, it does not buy us any-
thing to study the LLM instead of the human directly.

4. Where next for linguistic theory?

In this response so far, I have mostly concentrated on the claim 
that LLMs and their successes have seriously undermined specifically 
Chomskian approaches to grammar, that they are a refutation of and 
alternative to those theories. I have argued firstly that nothing criterial 
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to the enterprise has been refuted, and secondly that what has been pro-
duced is not qualitatively the same thing as a ‘theory of grammar’.

To my mind, what characterizes generative grammar, and the 
Chomskian approach in particular, was the radical reconception of the 
object of inquiry when it came to language science. Chomsky reframed 
the scientific question away from the cataloguing and analysis of lin-
guistic behaviour, towards the psychological questions concerning the 
nature of linguistic knowledge in human minds that allows them to pro-
duce these behaviours. We want to understand the system that generates 
linguistic behaviour, not simply analyze the produced patterns that are 
measurable and recordable as outputs of that system. In that sense, the 
school of thought that considers the LLM model itself to be the ‘theory’, 
the desired endpoint of scientific endeavour, is basically a return to the 
crudest kind of behaviourism where the model is evaluated by how well 
it succeeds in mimicking the externally observed data, and not in how it 
helps us to understand human minds.

So indeed, I do think we are seeing a shift that threatens to strike 
at the heart of the Chomskian enterprise, but not in the way Piantadosi 
imagines. It is a shift that reifies the patterns of external data as an 
object of inquiry in its own right, where the goal is to produce genera-
tive systems that will demonstrably reproduce the fine detailed pattern-
ing of that data. Engineering success is defined by matching output 
behaviour, not by achieving an understanding of how this happens 
within the engineered device (let alone how it happens within human 
minds which are quite different). Dataism is the real existential threat, 
and one which should be resisted, if we have the goal of understanding 
the role of language within human cognition. Dataism left unchecked 
can give rise to a kind of theoretical nihilism, which will lead to dead 
ends as soon as solutions need to be extended, or generalized over, or 
metatheorized.

If we are threatened with the demise of generative grammar, it is 
at this level, as part of a general distrust of symbolic theories and an 
enthusiasm for bottom up, theory-free, engineering solutions. I think 
that this is not progress. I think that humans and human scientists have 
made great strides in understanding the world by using the cognitive 
‘gadgets’ of language and symbolic theorizing. My hunch is that repre-
senting information symbolically is the gadget that allows us to general-
ize explicitly and metacognize in increasingly sophisticated ways. In this 
new era of big data and artificial intelligence aids to pattern-discovery, 
we need to maintain a pivotal role for human scientific expertise and 
theorizing. Generative grammar (or theoretical linguistics more gener-
ally) is a natural constituency for where that expertise can continue to 
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be nurtured and from where it can contribute to multidisciplinary ques-
tions.

Returning to Chesi (this issue), on the question of whether theoreti-
cians, or generative grammar (or specifically the Chomsky inspired lin-
guistic tradition) need to change in response to recent advances in this 
technology, my answer is yes, but with a perspective slightly different 
from that articulated in Chesi (this issue). I agree with Chesi that there 
are problems both in formalization, and in the nature of the data that 
can be used as falsifying evidence. While generative grammar can claim 
to be a theory (and we need theories!), it is fair to note that it has not 
being doing a particularly good job of showing that it is in fact a ‘good 
theory’. This is because, in my opinion, it has not really made good on 
its own goals of ‘explanatory adequacy’, and ironically for a theory that 
started off by placing the scientific object of study within the realm of 
individual cognition, it has not really seriously engaged with the results 
or observations from cognitive science. It is true that generative gram-
mar has always situated itself squarely at Marr’s computational level 
(Marr 1982), and has used this to justify the lack of theorizing to the 
next step algorithmic and implementational levels. But even Marr, in his 
work on vision, saw filling in those other levels as part of the scientific 
enterprise he was engaged in, and he theorized about those too. The 
problem is that if we as scientists do not form linking theories between 
the computational level and how these tasks are achieved in real brains, 
then we are in possession of theories that make no predictions whatso-
ever about data gathered by psycholinguists or neurolinguists. This in 
turn means that we cannot claim that such theories have higher levels of 
explanatory adequacy than others with the same descriptive coverage. It 
seems to me that many of the early claims to ‘explanatory adequacy’ in 
the rhetoric of the Government and Binding era rested on the potential 
to account for the acquisition of language. In fact, it turned out to be 
much more difficult than anticipated to formalize a concrete implemen-
tation of a learning algorithm under a principles and parameters con-
ception that achieves the right results deterministically given the input 
data and the kinds of cues available to the child (Gibson & Wexler 1994, 
but see also Fodor 1998). Moreover, acquisition is not the only explana-
tory adequacy benchmark. Generative grammar (and most especially the 
minimalist program), needs to begin to seriously theorize about the rela-
tionship between its computational theories and how they are embedded 
within more domain general theories of mind/brain. In other words, it 
needs to engage with a variety of different performance tasks directly 
and produce theories of them. The aim should be to get to the stage 
where our best theories do make predictions about the cognitive pro-
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cessing behaviours we can measure when we are deploying our ‘knowl-
edge of language’ whether in production or comprehension or acquisi-
tion. Only in this way can we bridge the commensurability gap between 
linguistic theory and the cognitive sciences, and only in this way can 
we assess the explanatory adequacy of these theories. So far, generative 
grammar has failed to do this. Not because it has tried and failed, but 
because it seems to have exerted a lot of rhetorical effort in arguing that 
it should not be required to try.

It is here that I wholeheartedly agree with Chesi that generative 
grammar needs to up its game if it is to take its place at the table where 
scientists take the next step towards understanding how language func-
tions within human cognition. Chesi argues that currently the state of 
formalization within minimalist theorizing lags behind what is necessary 
if minimalist grammar is to join the conversation at the highest level. 
This is because formalization is not consistent and is often piecemeal. I 
agree with this, but to it I would add that a more precise and complete 
formalization of the computational theories we have is not enough, 
because such theories do not make predictions beyond that of gram-
maticality at the level of the sentence. Grammatical theory needs to take 
the step toward a more algorithmic understanding, and thus open itself 
up to potential falsification from a wider range of data types. In doing 
so, it needs to avail itself of all the new mathematical tools and meth-
odologies on offer. I would argue that one of the things we are seeing 
in this new era of big data and LLMs is that the computational tools and 
methodologies at our disposal are greater and more sophisticated than 
ever before, and the data we are able to measure from human brains is 
getting more and more precise and detailed. It is no longer a pipe dream 
to think of making good on the promises of real explanatory adequacy. 
For the same reason, it is no longer defensible to stick cosily to our com-
putational level and virtuously deny any ambitions to make predictions 
about ‘processing’. In making the transition, we will have to engage in 
new mathematical techniques and methodologies, including computa-
tional modelling. And here we come back again full circle to artificial 
intelligence, neural networks and computational modelling, this time 
not as theories, but as tools for cognitive science. This is the position 
laid out by van Rooij et al. (2024) who point out that this was originally 
part of the idea of computational modelling and later connectionist net-
works (see also Bates et al. 1996), not as rivals to a particular theory, or 
rivals to our human intelligence (AGI anyone?), but as a tool for testing 
the different theoretical ideas concerning computation and cognition. 
Language scientists need to reclaim the space for real theory, and not be 
afraid to use computational modelling as part of their toolbox. Collins 
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(2024) argues that an expansion of the methodological toolbox has 
already begun within formal grammar, for reasons that are independent 
of the sudden success of LLMs. For example, he notes a number of recent 
approaches that fuse formal linguistic models with information theo-
retic methodologies (Levy 2008, Goldsmith & Riggle 2012, Rasin et al. 
2021). He also points out work like Allott et al. (2021) which discusses 
quantitative approaches to sentence processing and how they depend 
on the Chomskyan program. Collins himself advocates for generativists 
adopting methods from statistical physics, which can be used to tackle 
issues of complexity and emergence from a robustly theoretical and 
rationalistic point of view. When it comes to using the most advanced 
tools available, modelling via neural nets themselves are valuable tools 
in the pursuance of the Chomskian questions relating to human minds. 
I am in complete agreement with van Rooij et al. (2024) that we need 
to reclaim AI from the artificial general intelligence builders and put 
them to work in the service of answering the scientific questions we care 
about. Much of what is going on in the AI community is highly relevant 
and shows great potential for modelling and testing theoretical hypoth-
eses. I sincerely hope that theoreticians and generative grammarians 
embrace these new possibilities and engage with the advances in the 
field of computational modelling instead of interpreting LLMs as a rival 
theory to be attacked. It certainly does not help if LLMs are being hyped 
as actual theories that are ‘refutations’ of a whole linguistic tradition 
and its research questions.

The bottom line is that we have a unique opportunity in this new 
era to create a genuinely multidisciplinary science of language which 
involves a whole host of methodologies, with distinct though related 
research questions. There will of course be the inevitable challenges that 
arise for generativists in moving into this more multidisciplinary space, 
and not all generativists need choose to do so. It is necessary to empha-
size that there is still also important work to be done in pure language 
description and comparison that theoretical generativist linguists of all 
stripes continue to do, using shared or at least intertranslatable ana-
lytic vocabularies. I would not be unhappy however to be witnessing the 
demise of lazy repetition of ideological tropes and thought experiments 
associated with certain tribal memberships, which stand in the way of 
genuine re-examination of the issues from first principles as we learn 
more and more from different fields. If we are lucky, and if we have 
time to do it before capitalism consumes the planet, then we are on the 
brink of making genuine breakthroughs in cognitive neuroscience.

Understanding how language fits into cognition is one of the impor-
tant aspects of cognitive neuroscience more generally, and I think that 
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theoretical linguists can and should be a central part of that scientific 
conversation going forward. Some of those will be generativists.
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1	  Chesi (this issue) explains: “One platform designed for performing such linguistic 
benchmarks is SyntaxGym (Hu et al. 2020): an on-line, open-source repository that 
includes a significant set of linguistic contrasts – 39 test suites that include a total of 
about 4k sentences. For each relevant contrast included, human generalizations have 
been gathered in various studies. Direct comparisons of these data with the predic-
tions provided by the models under evaluation is then possible.”
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