

No

Edgar Onea,^a Filipe Hisao Kobayashi,^b Susi Wurmbrand^c

^a University of Graz, Austria <edgar.onea-gaspar@uni-graz.at> ^{b,c} University of Salzburg, Austria <filipe.kobayashi@plus.ac.at> <susanne.wurmbrand@plus.ac.at>

This reply makes two main points. First, it lays out why very large language models [vLLMs], although useful as tools in linguistics, cannot be compared to linguistic theories. Linguistics as a science is necessary to understand the workings of human language, and to gain insights into the cognitive properties of human knowledge pertaining to language. Second, the reply clarifies the spectrum of generative grammar and points to major achievements in the field of theoretical linguistics.

KEYWORDS: linguistic theories, generative grammar, formal generative typology.

1. Introduction

No. This is our answer to the attention-grabbing title-question of the paper, *Is it the end of (generative) linguistics as we know it?*, which we reply to here. From a scientific perspective, the end of generative linguistic research, which has as its goal a theory of human cognition, specifically the part we may call the human language faculty, is nowhere closer to the end than theories of physics, biology, or psychology.

Criticism of theories of generative linguistics, as perhaps most fundamental theories in other fields, has a long tradition from Sampson (1997) to Ibbotson & Tomasello (2016), including substantial foundational discussions of theoretical assumptions and empirical methods as well as shallow polemic claims. Yet, generative research is still very much alive and, in our view, blossoming. The current paper lines up with a new wave of criticism initiated by the provocative views in Piantadosi (2024), suggesting that the very large language models [vLLMs] currently dominating the natural language processing field are in some sense ‘better’ theories of language than what generative linguistics has to offer. While Chesi’s paper is more cautious in claiming a victory of vLLMs over theoretical linguistics, it still seems to paint a dire future for generative linguistics in view of impressive advances of vLLMs, suggesting that vLLMs may be competitors for generative linguistics. One main take-home message of our reply here is that vLLMs and generative grammar are in no way competitors, but rather two very dif-

ferent models which exist side-by-side due to their very different goals, areas, and scope of applications.

We believe that much of the apparent debate stems from comparisons of not-likes, in particular regarding what the goals of the different models dealing with language are, different views of what linguistic ‘theories’ are, and a lack of engagement with actual linguistic theories beyond the highly restricted set of works in narrow Minimalism that are cited in the original paper. Paired with a certain populist trend,¹ a very important and exciting field – generative grammar – has come under attack, which, once the goals and accomplishments of the field are correctly represented, is unwarranted. The article by Chesi brings out many interesting questions and conclusions, some of which we agree with, others we don’t.² The criticism on the lack of a unified formalization in generative linguistics is well taken, albeit unspecific: there hardly exists a scientific field studying complex empirical phenomena with a unified formalism.

In this reply, we wish to make two general points. First, vLLMs are very different from linguistic theories and do not address what we take to be the main goal of theoretical linguistics, that is, to develop a theory of what it means to ‘know’ a language – i.e. native speakers’ (usually implicit) knowledge about the rules and restrictions of their languages. Although vLLMs come very close to generating outputs that include all, and possibly also only, the grammatical expressions of a language, these systems can by no means be seen as linguistic theories. Second, the achievements of linguistic research are severely misrepresented in Chesi’s article. It is correct that after 30 years of research within the Minimalist Program, we are still far from having a complete theory of human language. However, this is very different from saying that nothing has been achieved, and we believe that it is exactly this linguistic research, especially its numerous empirical discoveries and advancements, that any understanding of language (whether from a generative or vLLM perspective) needs to build on.

2. vLLMs are not theories

Chesi’s position on the question of whether vLLMs are theories of language, i.e., linguistic theories, and let alone robust theories, is somewhat unclear in certain parts of the paper, but ultimately it seems fair to say that he takes vLLMs to be at least comparable to such theories, if not the most successful one. The following two quotes illustrate this. While the first quote explicitly claims that vLLMs are the best linguistic

theories, the second presupposes that they are state-of-the-art theories of language, demoting linguistics to – if anything – contributing interesting new pieces of data to be ultimately captured by the vLLMs.

[Quote 1] While vLLMs are arguably overrated as linguistic theories, the methodology proposed by Wilcox and colleagues (Wilcox *et al.* 2023) represents an appropriate approach to testing them. [...] In this respect, these vLLMs are, in fact, really the best theories on the market, i.e. observationally more adequate than any MG. (Chesi *this issue*: 39)

[Quote 2] Ultimately, the most significant contribution that a generative linguist can provide is a linguistic minimal contrast challenging a specific theoretical assumption or the performance of a vLLM. Successfully incorporating this new contrast into a shared dataset, which any (r)evolutionary explicit formalism must confront, would represent quite a considerable accomplishment in my opinion. (Chesi *this issue*: 40)

But in what precise sense are vLLMs theories of language, one may ask? The first and most natural answer would be to say that they solve, or are close to solving, the language problem as formulated in (1).

- (1) Language Problem (Chesi: 7)
Is theory X capable of generating and recognizing all and only the sentences Ss belonging to language L?

vLLMs of various kinds are remarkably good at generating grammatical sentences of English and to a certain degree they are also able to distinguish between grammatical and ungrammatical sentences of English if properly prompted. These behaviors can be seen as predictions of a fully formalized and in fact computationally implemented theory. However, a theory is usually understood as some explication of human understanding based on principles and rules and not just as a prediction machine (cf. also Kodner *et al.* 2023). If the underlying principles are not clear to a human, we cannot say that they serve understanding despite their success at the purely predictive level. Consider the following analogy: a box that always correctly predicts the weather for the next day. The box cannot be opened without destroying it, and its workings are entirely unknown by humanity (maybe it was gifted to humans by some alien civilization). It is hard to imagine that anybody would seriously claim that this box is in any interesting sense a theory of meteorology. The crucial missing bit is human understanding. In this sense, vLLMs seem to be nothing more than statistical models with their

output as their predictions. But even if one were to accept that statistical models are theories, Collins (2024) discusses a further mathematical reason why one would not want to consider vLLMs theories. Specifically, they are unbounded in the sense that vLLMs are able to approximate any mathematical function whatsoever. Thus, their success in a domain simply shows that success is possible, a point already shown by the very existence of humans who speak language.

But to the best of our understanding, it seems that Chesi, in agreement with Piantadosi, has something different in mind “As argued by Baroni 2022, [...] language models should be treated as bona fide linguistic theories.” (Piantadosi 2024: 360). Here is the core of Baroni’s argument:

It is more appropriate [...] to look at deep nets as linguistic theories, encoding non-trivial structural priors facilitating language acquisition and processing. More precisely, we can think of a deep net architecture, before any language specific training, as a general theory defining a space of possible grammars, and of the same network trained on data from a specific language as a grammar, that is, a computational system that, given an input utterance in a language, can predict whether the sequence is acceptable to an idealized speaker of the language (e.g., Chomsky, 1986; Müller, 2020; Sag *et al.*, 2003).

It is undoubtedly easier to inspect the inner workings of a symbolic linguistic theory than those of a trained deep net, and indeed a classic objection against artificial neural networks as cognitive theories is that they are unopenable black boxes (e.g., McCloskey 1991). However, going hand in hand with the development of more complex models, the field has also made extensive progress in the development of methods to analyse their states and behaviors (Belinkov and Glass, 2019), providing strong methodological support for a systematic analysis of deep nets. (Baroni 2022: 7)

In other words, under such a view, a vLLM is a theory that has a specific architecture and thus this architectural component, that can be well understood, is to be considered a general theory of language, and the specific states of those architectures reached by training can be seen as specific instantiations of grammars. Before evaluating this claim, it is worth being more precise about what this sort of architecture actually means. vLLMs, broadly speaking and glossing over differences, are essentially probabilistic functions from inputs to outputs with a complex computational algorithm typically based on neural network architectures. This complex algorithm is best understood as an architecture of various modules of complex networks that contain fixed operations and variable

parameters. The parameters are adjusted during training to optimize output. Training thereby is usually understood as an optimization of predicting the next token given an input context-window. There are three crucial components of the architecture of vLLMs that need to be mentioned explicitly. Firstly, the input to a vLLM is usually not understood as tokens of language but as ‘language embeddings’, i.e., linguistic expressions are represented by vector spaces that are derived from the analysis of the whole training corpus (Pennington *et al.* 2014). In other words, a word, syllable, or even letter (a.k.a. *subword tokenization*) is – in the very first step – transformed into a vector that stores something akin to information about its distribution but that is in fact optimized for the tasks of the vLLM. Secondly, vLLMs encompass so-called ‘self-attention’ operations that take the input sequence and transform it using learned linear projections. They compute pairwise interactions between all elements of the sequence, resulting in a set of dynamic weights (Vaswani *et al.* 2017). These weights are used to create a weighted sum of the input values. This process can be repeated multiple times in subsequent layers, enabling the model to iteratively refine its understanding of the relationships between different parts of the input, which allows the model to ‘decide’ which parts of the input to focus on and to what degree in the computational process (Brown *et al.* 2020). These two elements are crucial for two reasons: (i) language embeddings are specific probabilistic computational implementations of the notion of equivalence classes, where, however, syntax is not the sole criterion, but semantics, pragmatics and any other distributional aspect are also implicitly included; and (ii) self-attention is specifically designed to handle dependencies, and very specifically long-range dependencies, in language, along with the role of context for weighing the importance of linguistic information. The third component involves what many refer to as a black box, i.e., extremely complex neural network layers that essentially perform matrix-operations that cannot be easily comprehended by humans in a conceptual way, even though they are mathematically well-defined.

With this background, we suggest three reasons for why we must reject the idea that vLLMs are in any way, shape, or form linguistic theories. Firstly, to our knowledge, all existing vLLM models include an entirely opaque layer that transitions between their theoretically better understood activities (vectorization, self-attention) and their output in ways that are indiscernible for humans. If translated into generative mathematical terminology, this would amount to the following type of theory: (i) we explicate the numeration in some specific way; (ii) we apply some well understood syntactic operations leading us to some syntactic representation; (iii) we apply an unknown function F to that

syntactic representation; (iv) we get correct results in each and every case. As long as we do not understand the function F , the fact that such a function exists has only limited theoretical relevance. Specifically, the existence of such a function shows that the problem formulated in (1) can be solved. What it does not show, however, is that it is possible for humans to understand F . Should it turn out that F is similarly hard to understand as the human brain, the result would not be very exciting. Hence, speaking about such unknown functions would make it hard to judge the merits of the model irrespective of its empirical glory.

Secondly, by the same reasoning as the one Baroni implies, one can easily claim that a human who speaks English is a theory of English. After all, a human comes with a prior architecture (a human's brain has structure), and learning a language is a parameter fitting of the human brain in the huge space of possible theories, selected by what works best, e.g., in terms of producing the best responses. The point here is not that there is a difference between humans and machines, but that even if there were no differences at all, this would not make a vLLM more a theory of language than a speaker of the language. A theory would be the results of the 'study' of a vLLM. If we had a set of explanatory rules and generalizations, rules about how a vLLM makes its predictions, what it can and cannot predict in general, when it makes mistakes and when it does not, etc., that knowledge would yield a theory of language (as instantiated by a vLLM, and not necessarily about human language). But the vLLM itself is in no way a theory.

So, we may ask whether we want to study vLLMs instead of humans, which may appear cheaper and more ethical (although the impact on climate caused by vLLMs should also not be ignored). But, and this is our third point, one can actually be quite certain that vLLMs operate quite differently from humans and thus studying them will likely not get us very far in the endeavor of studying the human language faculty. There are several reasons to assume that vLLMs are fundamentally different in comparison to humans in terms of language faculty. One is that vLLMs can have quite radically different architecture, size, and training methods and yet achieve excellent (and thus comparable) results (see, e.g., Naveed *et al.* 2024 for a recent comprehensive overview). Another one is simply the amount of data including powerful pre-analysis of the data (e.g., vectorization) that these models are trained on; amounts of data that would seem impossible for a human to be exposed to. Yet another argument is that vLLMs currently do not integrate other cognitive faculties such as vision and other sensory input. Arguably, if vLLMs manage to successfully combine a more holistic picture of reality with linguistic data,³ one can expect that vLLMs

could become much more similar to humans. For now, however, this just highlights that currently, they are very different. Finally and more importantly, since our knowledge about the human brain's workings is still limited, we simply would not be able to tell if some particular vLLM does or does not mirror the way human cognition works, and thus it could not be established whether or not such research is successful.

In conclusion, vLLMs are not theories and they are not about humans, which makes them, albeit useful in many ways, not relevant for learning much, if anything, about the human language faculty. Indeed, we would change the perspective and recommendations expressed by Chesi. It is not the task of generative linguistics to provide data for vLLMs, but instead generative linguists can use vLLMs to optimize their work process and possibly even perform small-scale experiments. vLLMs are tools for linguists, and not the other way around. This is because science is different from engineering.

3. What generative linguists really do

In the previous section, we pointed to fundamental differences between vLLMs and linguistic theories, which effectively make a comparison between the two not very informative. In this section, we concentrate on what generative linguistics (really) is, summarize areas which have led to great advancements, and clarify points of the debate which we felt are either missing or misrepresented in the article by Chesi.

The goal of a theoretical linguist can be summarized as in the quote below from Marantz (2019):

But what should be clear to anyone reading these attacks on linguists is that computationalists are not engaged in the same scientific enterprise as linguists. The linguistic enterprise is about the knowledge of language that underlies everything that a speaker does with his/her language, including not only writing those web pages that serve as data for computational linguistics, but also understanding and making judgments about sentences that are carefully constructed by linguists as test cases to decide between competing theories. (Marantz 2019: 10)

In our understanding, all approaches that have as a goal the modeling of the human language capacity would fall under the umbrella 'generative grammar'. Specifically, restricting ourselves to syntax here, this would include, in addition to the narrow Minimalism used by Chesi, other developments of the Government and Binding [GB]/Principles

and Parameters [P&P] theories, Relational Grammar [RG], Lexical Functional Grammar [LFG], Tree Adjoining Grammar, Head-Driven Phrase Structure Grammar, and others. The reason why this is important to keep in mind is that there has been immense progress in these approaches, both empirically and theoretically (see below). While it is correct that the variety of frameworks comes with a not always unified variety of terminology and formalisms, we do not share Chesi's concern that this is necessarily a major hurdle for approaching the main goal of theoretical linguistics, which is to understand the knowledge of language that humans have. On the contrary, as pointed out in Marantz (2019), theory-internal predictions are often exactly what pushes the field forwards and leads to new discoveries. Moreover, there have also been major successes where predictions and generalizations gained through one theoretical lens have informed and altered thinking in other theoretical approaches (see, for instance, the RG/LFG discovery of unaccusativity and other grammatical function phenomena, which have become standard wisdom in GB/P&P/Minimalist approaches). Lastly, as we concluded in the previous section, it is not the task of theoretical linguistics to prepare data and unified concepts for further processing by vLLMs, but the main task is, and has always been, to model grammatical properties and dependencies (including those types on which vLLMs still perform poorly; see, e.g., Katzir 2023, Charchidi 2024) in a way that reflects the knowledge of language that humans have.

Generally, the article grossly misrepresents which theories fall under the label 'generative grammar', what phenomena have been investigated (the decades of generative research have gone far beyond word order), the range of generalizations that have been found (see D'Alessandro 2019 for an extensive summary), and the theoretical methods available in these approaches. We are not necessarily objecting to the critique against the corner of Minimalism offered by Chesi, but the extension from that critique to a condemnation of the entire generative enterprise, to us, is entirely invalid. We particularly object to the impression given in the article that no or only very little progress has been made in the field over the last decades. This impression does not reflect reality, and exactly such dismissiveness and ignorance have already been criticized in Marantz (2019):

Linguists predict data they don't have, the body of empirical generalizations uncovered by the methodology grows year by year, and alternative accounts of phenomena are in fact pitted against each other, with the losers no longer viable. Progress in linguistics is transparently displayed in our major journals; nevertheless, some scientists and engi-

neers that deal with language still question the legitimacy of the generative linguistic enterprise. (Marantz 2019: 9)

Chesi somewhat acknowledges this in the section titled *Generative Parameters and Word Order Variation*, referring to approaches in the 1980s and 1990s where the goal was a “comprehensive list of parameters and organizing them into a coherent hierarchy” (p. 36). The entire section, however, is just two pages long and thematically rather one-sided, which is quite puzzling, since Chesi himself states that “In this domain, I perceive the most significant advancements within generative linguistics” (p. 36).

Yet except for this short section, the rest of the article presents current linguistic research solely within the generative tradition concerned with the key Minimalist question “How close does language come to optimal design?”, which, in practice, characterizes only one, arguably not even the most widespread, area of research in the field (see also Bobaljik & Wurmbrand 2008). As in any scientific enterprise, parsimony and theoretical simplicity still play a key role in linguistic theorizing, but the goals of many practicing linguists seem to be, instead, to understand the extent and regularities of cross-linguistic variation. We may agree with Chesi that some of the findings are still fragmentary and not always consistent with each other, but that is a natural consequence of the complexity of the variation.

We do want to highlight, however, that in many areas, significant progress has been made by exactly such research on universals and variation. A fruitful framework in the post-GB/P&P tradition, for instance, is ‘formal generative typology’ [FGT] (Baker 2009, Baker & McCloskey 2007) where findings from typological research are combined with the formal methods and concepts from the generative tradition. Among the most important of these findings, are so-called ‘implicational hierarchies/universals’, which Corbett (2010) has described as “the most powerful theoretical tools available to the typologist” as they “allow us to make specific and restrictive claims about possible human languages” (p. 1). Implicational universals are generalizations of the form: *if* a language has property A, it also has property B (but not vice versa). In other words, they are claims about non-existing languages – those that have A but not B. The goal of many works within FGT (e.g., Bobaljik 2012, Lohninger & Wurmbrand 2025) is to precisely explain these generalizations as a consequence of the very nature of the human language faculty. FGT approaches, therefore go beyond the Language Problem, as they typically aim for generalizations that are at the heart of the ‘Poverty of Stimulus’ problem. Similarly, Pesetsky (2024) makes an argument based on universals by considering the property of the *that*-trace effect:

The fact that languages in general behave this way teaches us that someone's knowledge of the *that*-trace effect is unlikely to arise from that individual's exposure to data... precisely because it is a general fact about languages across the globe, not a fact particular to one speech community, much less one individual exposed to one particular corpus. (Pesetsky 2024: 38)

Findings from universals and the points of variation show that generative research goes far beyond testing whether the grammar of a given language L identifies all and only the sentences of L. It is unclear how vLLMs could ever reach such findings on their own (given also the difficulties of vLLMs in forming generalizations as noted in Katzir 2023), let alone explain them. It is generative linguistics, by its very nature, understanding individual languages as part of a broader shared capacity, that sets out (and answers) the kind of research program that can uncover generalizations that span all languages. Despite their successes in mimicking English (and possibly some other languages), vLLMs seem ill-suited to being able to probe questions of linguistic universals and cross-linguistic generalizations, especially considering that the vast majority of the world's languages are unlikely to ever have corpora of the size needed for vLLMs to even get off the ground.

4. Conclusion

Chesi's article makes many important points and helpful suggestions for both computational and generative linguists. In our reply we highlighted two points where we see the world rather differently: the view that vLLMs are linguistic theories and the assessment of the achievements and importance of generative linguistics. There are two more general take-home messages we would like to offer here: one specifically for generative linguists, one for anyone who thinks they would want to say something about generative linguistics.

Chesi's article has voiced a problem with the perception of what generative linguistics is (it is a diverse field), what its goals are (our goal is not to build a speaking machine mirroring human language use), and what tools and methods are available (e.g., universals, Formal Generative Typology). Given that the overall tone of Chesi's article seems to be to question the importance and chances of survival of the entire field of generative grammar, concentrating on a tiny corner of the field and leaving the vast majority of other parts completely aside is not only unsound from the perspective of the argumentation, but also

creates a skewed picture of the situation, leading, in particular to the untrained eye, to dangerous disinformation.

As for the generative linguists, our recommendation would be to continue all the exciting research programs, continue asking the important questions about the human capacity for language, but also engage more with research from other fields, via making our research more accessible and incorporating questions and results from different perspectives (see, for instance, the collaborative Austrian research project *Language between Redundancy and Deficiency* which the authors of this reply are part of and where we take seriously the role of the stochastic cognitive environment in which language as a generative rule-based system is embedded; or the ERC synergy project *Realizing Leibniz's Dream: Child Languages as a Mirror of the Mind* led by Alexiadou, Guasti, and Sauerland). Much of the debate appears to us to be caused by misunderstandings (at various levels), and our hope is that by mutual engagement and understanding of the different goals and methods, these could be avoided and the benefits of different approaches to language could not only inform each other but also strengthen the different frameworks.

Abbreviations

GB = Government and Binding; FGT = Formal Generative Typology; P&P = Principles and Parameters; vLLM = very Large Language Models.

Note

¹ Statements such as “Piantadosi’s dismissal of Chomsky’s approach is ruthless, but generative linguists deserve it”, “A spectre was haunting generative linguistics”, or “Exotic theoretical puzzles with funny names and acronyms” may be catchy, but have no place in a scientific article.

² Since it is not always clear to us what the exact conclusions are that Chesi reaches, some of our points may not address his article directly, but rather the works his paper is building on.

³ This may be surprisingly difficult given that, as opposed to raw linguistic data, we do have not so much linguistic data that are actually mapped to the other sensory data in a useful way (such as, e.g., picture descriptions).

Bibliographical References

See the unified list at the end of this issue.

Unified Bibliographical References

- Abels, Klaus & Neeleman, Ad 2012. Linear Asymmetries and the LCA: Linear Asymmetries and the LCA. *Syntax* 15,1. 25-74. <doi.org/10.1111/j.1467-9612.2011.00163.x>.
- Abney, Steven 1996. Statistical methods. In Klavans, Judith L. & Resnik, Philip (eds.), *The Balancing Act: Combining Symbolic and Statistical Approaches to Language*. Cambridge, MA: MIT Press. 1-26.
- Acemoglu, Daron 2024. *The Simple Macroeconomics of AI*. Working paper 32487. Cambridge, MA: National Bureau of Economic Research. <DOI: 10.3386/w32487>.
- Achinstein, Peter 1985. *The Nature of Explanation*. Oxford: Oxford University Press.
- Aksënova, Alëna & Deshmukh, Sanket 2018. Formal restrictions on multiple tiers. In *Proceedings of the society for computation in linguistics (SCiL) 2018*. 64-73.
- Aksënova, Alëna; Graf, Thomas & Moradi, Sedigheh 2016. Morphotactics as tier-based strictly local dependencies. In *Proceedings of the 14th SIGMORPHON workshop on computational research in phonetics, phonology, and morphology*. 121-130.
- Aksënova, Alëna; Rawski, Jonathan; Graf, Thomas & Heinz, Jeffrey 2024. The computational nature of hamony patterns. In Ritter, Nancy & van der Hulst, Harry (eds.), *Handbook of vowel harmony*. Oxford, UK: Oxford University Press. 437-451.
- Allott, Nicholas; Kush, Dave & Dillon, Brian 2021. Sentence processing and syntactic theory. In Lohndal, T. & Rey, G. (eds.), *A Companion to Chomsky*. Wiley Publishing. 305-324.
- Ambridge, Ben & Blything, Liam 2024. Large language models are better than theoretical linguists at theoretical linguistics. *Theoretical Linguistics* 50,1-2. 33-48.
- Anderson, Chris 2008. The end of theory: The data deluge makes the scientific method obsolete. *Wired* 23 June.
- Askell, Amanda; Bai, Yuntao; Chen, Anna; Drain, Dawn; Ganguli, Deep; Henighan, Tom; Jones, Andy; Joseph, Nicholas; Mann, Ben; DasSarma, Nova *et al.* 2021. A general language assistant as a laboratory for alignment. <arXiv:2112.00861>.
- Ayers, John W. *et al.* 2023. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. *JAMA Internal Medicine*. 589-596. <DOI: 10.1001/jamaintern-med.2023.1838>.
- Baker, Mark 2001. *The atoms of language* (1st ed.). New York: Basic Books.
- Baker, Mark 2009. Formal generative typology. In Heine, Bernd & Narrog, Heiko (eds.), *The Oxford Handbook of Linguistic Analysis*. 1st edition. Oxford: Oxford University Press. 285-312.

- Baker, Mark 2013. On agreement and its relationship to case: Some generative ideas and results. *Lingua* 130. 14-32.
- Baker, Mark 2021. On Chomsky's legacy in the study of linguistic diversity. In Allott, Nicholas; Lohndal, Terje & Rey, George (eds.), *A companion to Chomsky*. Hoboken, NJ: Wiley Blackwell. 158-171. <doi:10.1002/9781119598732.ch10>.
- Baker, Mark & McCloskey, Jim 2007. On the relationship of typology to theoretical syntax. *Linguistic Typology* 11. 285-296.
- Bai, Yuntao; Kadavath, Saurav; Kundu, Sandipan; Askell, Amanda; Kernion, Jackson; Jones, Andy; Chen, Anna; Goldie, Anna; Mirhoseini, Azalia; McKinnon, Cameron *et al.* 2022. Constitutional AI: Harmlessness from AI feedback. <arXiv:2212.08073>.
- Baltin, Mark 2017. Extrapolosition. In Everaert, Martin & van Riemsdijk, Henk C. (eds.), *The Wiley Blackwell Companion to Syntax, Second Edition*. Hoboken, NJ: John Wiley & Sons, Inc. 1-33. <doi.org/10.1002/9781118358733.wbsyncom111>.
- Barile, Joseph *et al.* 2024. Diagnostic accuracy of a Large Language Model in pediatric case studies. *JAMA Pediatrics*. 313-315. <DOI: 10.1001/jamapediatrics.2023.5750>.
- Baroni, Marco 2022. On the proper role of linguistically oriented deep net analysis in linguistic theorizing. In Lappin, Shalom & Bernardy, Jean-Philippe (eds.), *Algebraic structures in natural language*. Boca Raton: CRC Press, Taylor & Francis. 1-16. *ICoRR* <arxiv.org/abs/2106.08694> (2021).
- Barton, G. Edward; Berwick, Robert C. & Ristad, Eric Sven 1987. *Computational complexity and natural language*. Cambridge, MA: MIT Press.
- Bates, Elizabeth; Elman, Jeffrey L.; Johnson, Mark H.; Karmiloff-Smith, Annette; Parisi, Domenico & Plunkett, Kim 1996. *Rethinking Innateness: A Connectionist Perspective on Development*. Cambridge, MA: MIT Press. <doi.org/10.7551/mitpress/5929.001.0001>.
- Beghelli, Filippo & Stowell, Tim 1997. Distributivity and Negation: The Syntax of Each and Every. In Szabolcsi, Anna (ed.), *Ways of Scope Taking* (Vol. 65). Dordrecht: Springer Netherlands. 71-107. <doi.org/10.1007/978-94-011-5814-5_3>.
- Beier, Eleonora J. & Ferreira, Fernanda 2022. Replication of Cutler, Anne & Fodor, Jerry A. 1979, Semantic focus and sentence comprehension. *Journal of Memory and Language* 126. <doi.org/10.1016/j.jml.2022.104339>.
- beim Graben, Peter & Potthast, Roland 2014. Universal neural field computation. In Coombes, Stephen; beim Graben, Peter; Potthast, Roland & Wright, James (eds.), *Neural Fields*. Berlin: Springer. <doi.org/10.1007/978-3-642-54593-1_11>.
- Belkin, Mikhail; Hsu, Daniel; Ma, Siyuan & Mandal, Soumik 2019. Reconciling modern machine-learning practice and the classical bias-variance trade-off. *Proceedings of the National Academy of Sciences* 116. 15849-15854. <doi.org/10.1073/pnas.1903070116>.

- Bellelli, Adriana 2004. *Structures and Beyond: The Cartography of Syntactic Structures, Volume 3*. Oxford, UK: Oxford University Press.
- Bender, Emily M.; Gebru, Timnit; McMillan-Major, Angelina & Shmitchell, Shmargaret 2021. On the dangers of stochastic parrots: Can language models be too big? New York, NY: Association for Computing Machinery. 610-623. <DOI: 10.1145/3442188.3445922>.
- Bender, Emily M. & Hanna, Alex 2025. *The AI Con: How to Fight Big Tech's Hype and Create the Future We Want*. Harper Collins.
- Bender, Emily & Koller, Alexander 2020. Climbing toward NLU: On meaning, form, and understanding in the age of data. In *Proceedings of the 58th annual meeting of the Association for Computational Linguistics*. 5185-5198. <www.aclweb.org/anthology/2020.acl-main.463>.
- Benesty, Michaël 2023. *Unexpected description of GPT4 architecture*. <x.com/pommedeterre33/status/1671263789914677248>.
- Bengio, Yoshua; Hinton, Geoffrey; Yao, Andrew; Song, Dawn; Abbeel, Pieter; Darrell, Trevor; Harari, Yuval Noah; Zhang, Ya-Qin; Xue, Lan; Shalev-Shwartz, Shai; Hadfield, Gillian; Clune, Jeff; Maharaj, Tegan; Hutter, Frank; Baydin, Atilim Gunes; McIlraith, Sheila; Gao, Qiqi; Acharya, Ashwin; Krueger, David; Dragan, Anca; Torr, Philip; Russell, Stuart; Kahneman, Daniel; Brauner, Jan & Minderma, Soren 2024. Managing extreme AI risks amid rapid progress. *Science* 384. 842-845. <doi.org/10.1126/science.adn0117>.
- Berwick, Robert C. & Chomsky, Noam 2016. *Why only us: Language and evolution*. Cambridge, MA: MIT Press.
- Berwick, Robert C.; Pietroski, Paul; Yankama, Beracah & Chomsky, Noam 2011. Poverty of the stimulus revisited. *Cognitive Science* 35,7. 1207-1242. <DOI: 10.1111/j.1551-6709.2011.01189.x>.
- Bever, Thomas G. 1970. The cognitive basis for linguistic structures. *Cognition and the Development of Language*.
- Bever, Thomas G. & Townsend, David J. 2001. Some Sentences on Our Consciousness of Sentences. In Dupoux, Emmanuel (ed.), *Language, Brain, and Cognitive Development: Essays in Honor of Jacques Mehler*. Cambridge, MA: MIT Press. 143-155.
- Bianchi, Valentina & Chesi, Cristiano 2014. Subject islands, reconstruction, and the flow of the computation. *Linguistic Inquiry*. 525-569. <doi.org/10.1162/LING_a_00166>.
- Bjorkman, Bronwyn M. 2017. Singular *they* and the syntactic representation of gender in English. *Glossa: A Journal of General Linguistics* 2,1. <DOI: 10.5334/gjgl.374>.
- Blank, Idan 2016. *The Functional Architecture of Language Comprehension Mechanisms: Fundamental Principles Revealed with fMRI*. PhD dissertation. MIT. <doi.org/1721.1/7582>.
- Bloom, Paul A. & Fischler, Ira 1980. Completion norms for 329 sentence contexts. *Memory & Cognition* 8,6. 631-642. <doi.org/10.3758/BF03213783>.

- Bobaljik, Jonathan D. 2012. *Universals in comparative morphology: Suppletion, superlatives, and the structure of words*. Cambridge, MA: MIT Press.
- Bobaljik, Jonathan D. & Wurmbrand, Susi 2008. Case in GB / Minimalism. In Malchukov, Andrej & Spencer, Andrew (eds.), *The Handbook of Case*. New York: Oxford University Press. 44-58.
- Bobrow, Daniel G.; Cheslow, Bob; Condoravdi, Cleo; Karttunen, Lauri; Holloway King, Tracy; Nairn, Rowan; de Paiva, Valeria; Price, Charlotte & Zaenen, Annie 2007. PARC's bridge and question answering system. In *Proceedings of the Grammar Engineering Across Frameworks Workshop (GEFA 2007)*. CSLI Publications Online. 46-66.
- Bock, J. Kathryn 1986. Meaning, sound, and syntax: Lexical priming in sentence production. *Journal of Experimental Psychology: Learning, Memory, and Cognition* 12,4. 575-586. <doi.org/10.1037/0278-7393.12.4.575>.
- Boeckx, Cedric & Leivada, Evelina 2013. Entangled parametric hierarchies: Problems for an overspecified Universal Grammar. *PLOS ONE* 8,9. <doi:10.1371/journal.pone.0072357>.
- Bögel, Tina; Freiseis, Mila; Hill, Romi; Wambach, Daniel & Zhao, Tianyi 2024. Language redundancy and acoustic salience: An account in LFG. In Butt, Miriam; Findlay, Jamie A. & Toivonen, Ida (eds.), *The proceedings of the Ifg'24 conference*. 90-115.
- Bögel, Tina & Zhao, Tianyi 2025. From speech signal to syntactic structure: A computational implementation. *Journal of Language Modeling* 13,1. 1-42.
- Borer, Hagit 2005. *Structuring sense: In name only*. Oxford: Oxford University Press.
- Bošković, Željko 2005. On the locality of left branch extraction and the structure of NP. *Studia Linguistica* 59. 1-45.
- Bošković, Željko 2016. Introduction. *The Linguistic Review* 33,1. 1-16. <doi.org/10.1515/tlr-2015-0012>.
- Bowman, Samuel R.; Hyun, Jeeyoon; Perez, Ethan; Chen, Edwin; Pettit, Craig; Heiner, Scott; Lukošiūtė, Kamilė; Askell, Amanda; Jones, Andy; Chen, Anna *et al.* 2022. Measuring progress on scalable oversight for large language models. <arXiv:2211.03540>.
- Brayton, Flint; Laubach, Thomas & Reifschneider, David 2014. *The FRB/US Model: A Tool for Macroeconomic Policy Analysis*. Washington, DC: Board of Governors of the Federal Reserve System. <DOI: 10.17016/2380-7172.0012>.
- Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming & Hale, John T. 2016. Abstract linguistic structure correlates with temporal activity during naturalistic comprehension. *Brain and Language* 157-158. 81-94. <doi.org/10.1016/j.bandl.2016.04.008>.
- Bresnan, Joan 1982. Control and complementation. *Linguistic Inquiry* 13,3. 343-434.
- Bresnan, Joan 2016. Linguistics: The Garden and the Bush. *Computational Linguistics* 42,4. 599-617. <doi.org/10.1162/COLI a 00260>.

- Bresnan, Joan; Cueni, Anna; Nikitina, Tatiana & Baayen, R. Harald 2007. Predicting the dative alternation. In Bouma, Gerlof; Krämer, Irene & Zwarts, Joost (eds.), *Cognitive Foundations of Interpretation*. Amsterdam: Royal Netherlands Academy of Science. 69-94.
- Bressan, Veronica; Piccini Bianchessi, Maria Letizia; Fusco, Achille; Rossi, Sarah; Neri, Sofia & Chesi, Cristiano 2025. BLiMP-IT. <doi.org/10.17605/OSF.IO/2JKFN>.
- Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, C.; ... Amodei, D. 2020. Language Models are Few-Shot Learners. In Larochelle, Hugo *et al.* (eds.), *Advances in Neural Information Processing Systems 33 (NeurIPS 2020) Proceedings*. <arxiv.org/abs/2005.14165>.
- Brunato, Dominique; Chesi, Cristiano; Dell'Orletta, Felice; Montemagni, Simonetta; Venturi, Giulia & Zamparelli, Roberto 2020. AcCompl-it@ EVALITA2020: Overview of the acceptability & complexity evaluation task for Italian. *Proceedings of Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020), Online. CEUR. Org.*
- Burness, Phillip; McMullin, Kevin & Chandlee, Jane 2021. Long-distance phonological processes as tier-based strictly local functions. *Glossa* 6. 1-37. <doi.org/10.16995/glossa.5780>.
- Burness, Phillip; McMullin, Kevin & Nevins, Andrew 2024. Revisiting locality in vowel harmony. In Ritter, Nancy & van der Hulst, Harry (eds.), *Handbook of vowel harmony*. Oxford, UK: Oxford University Press. 269-290.
- Butt, Miriam; Bögel, Tina; Zymla, Mark-Matthias & Mumtaz, Benazir 2024. Alternative questions in Urdu: from the speech signal to semantics. In Butt, Miriam; Findlay, Jamie & Toivonen, Ida (eds.), *Proceedings of the LFG'24 Conference*. Konstanz: PubliKon. 141-164. <lfg-proceedings.org/lfg/index.php/main/article/view/65/50>.
- Butt, Miriam; Holloway King, Tracy; Niño, María-Eugenia & Segond, Frédérique 1999. *A Grammar Writer's Cookbook*. Stanford: CSLI Publications.
- Butt, Miriam & Ramchand, Gillian 2005. Complex aspectual structure in Hindi/Urdu. In Ertishik-Shir, Nomi & Rappaport, Tova (eds.), *The Syntax of Aspect*. Oxford: Oxford University Press. 117-153.
- Cahill, Aoife 2008. Treebank-based probabilistic phrase structure parsing. *Language and Linguistics Compass* 2,1. 36-58.
- Cann, Ronnie; Kempson, Ruth & Marten, Lutz 2005. *The Dynamics of Language: An introduction*. Elsevier Academic Press.
- Cao, Rosa & Yamins, Daniel 2024. Explanatory Models in Neuroscience, Part 2: Functional Intelligibility and the Contravariance Principle. *Cognitive Systems Research* 85. 101200. <doi.org/10.1016/j.cogsys.2023.101200>.

- Carnie, Andrew 2013. *Syntax: A Generative Introduction, Third Edition*. Malden, MA: Wiley Blackwell.
- Carnie, Andrew 2021. *Syntax: A Generative Introduction, Fourth Edition*. Malden, MA: Wiley Blackwell.
- Cauchy, Augustin 1847. Méthode générale pour la résolution des systèmes d'équations simultanées. *Comptes rendus hebdomadaires des séances de l'Académie des sciences* 25. 536-538.
- Cecchetti, Gabriele; Tomasini, Cedric A.; Herff, Steffen A. & Rohrmeier, Martin A. 2023. Interpreting rhythm as parsing. *Cognitive Science* 47. e13389. <doi.org/10.1111/cogs.13389>.
- Chaitin, Gregory J. 1969. On the Simplicity and Speed of Programs for Computing Infinite Sets of Natural Numbers. *Journal of the ACM* 16,3. 407-422. <doi.org/10.1145/321526.321530>.
- Chandlee, Jane 2014. Strictly local phonological processes. PhD dissertation. University of Delaware.
- Chandlee, Jane 2017. Computational locality in morphological maps. *Morphology* 27. 599-641.
- Chandlee, Jane 2022. Less is more: Reexamining assumptions through the narrow focus of subregularity. *Theoretical Linguistics* 48. 205-218.
- Chandlee, Jane & Heinz, Jeffrey 2018. Strict locality and phonological maps. *Linguistic Inquiry* 49. 23-60.
- Charchidi, Vincent J. 2024. Creative Minds Like Ours? Large Language Models and the Creative Aspect of Language Use. *Biolinguistics* 18. 1-31.
- Charpentier, Lucas Georges Gabriel & Samuel, David 2023. Not all layers are equally as important: Every Layer Counts BERT. *Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning*. 210-224. <doi.org/10.18653/v1/2023.conll-babylm.20>.
- Chen, Binglin; Lewis, Colleen M.; West, Matthew & Zilles, Craig 2024. Plagiarism in the age of Generative AI: Cheating method change and learning loss in an Intro to CS Course. In *L@S '24: Eleventh ACM Conference on Learning @ Scale, Atlanta GA USA*. New York, NY: ACM. 75-85. <DOI: [10.1145/3657604.3662046](https://doi.org/10.1145/3657604.3662046)>.
- Chen, Tianlong; Frankle, Jonathan; Chang, Shiyu; Liu, Sijia; Zhang, Yang; Wang, Zhangyang & Carbin, Michael 2020. The lottery ticket hypothesis for pre-trained BERT networks. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F. & Lin, H. (eds.), *Advances in Neural Information Processing Systems 33 (NeurIPS 2020)*. Online: Curran Associates, Inc. 15834-15846.
- Chen, Zhong & Hale, John T. 2010. Deforesting logical form. *Procs. Mathematics of Language*. Berlin: Springer. LNCS 6149. <doi.org/10.1007/978-3-642-14322-9_2>.
- Cheng, Lisa L.-S.; Heycock, Caroline & Zamparelli, Roberto 2017. Two levels for definiteness. In Erlewine, M. Y. (ed.), *Proceedings of GLOW in Asia XI – Vol. 1. Volume 84 of MIT Working Papers in Linguistics*. MIT.
- Cheng, Lisa L.-S. & Sybesma, Rint 1999. Bare and not-so-bare nouns and the

- structure of NP. *Linguistic Inquiry* 30,4. 509-542.
- Chesi, Cristiano 2007. An introduction to phase-based minimalist grammars: why move is top-down from left-to-right. In Moscati, V. (ed.), *STIL – Studies in Linguistics*, Volume 1. CISCL Press. 38-75.
- Chesi, Cristiano 2021. Expectation-based Minimalist Grammars. <arxiv.org/abs/2109.13871>.
- Chesi, Cristiano 2023. Parameters of cross-linguistic variation in expectation-based Minimalist Grammars (e-MGs). *Italian Journal of Computational Linguistics* 9,1. 21.
- Chesi, Cristiano *forthcoming*. Linearization (as Part of Core Syntax). In Grohmann, Kleanthes & Leivada, Evelina (eds.), *Cambridge Handbook of Minimalism*. Cambridge (UK): Cambridge University Press. <ling.auf.net/lingbuzz/006689>.
- Chesi, Cristiano; Barbini, Matilde; Bressan, Veronica; Neri, Sofia; Piccini Bianchessi, Maria Letizia; Sarah, Rossi & Sgrizzi, Tommaso 2024. Different Ways to Forget: Linguistic Gates in Recurrent Neural Networks. In *Proceedings of the BabyLM Challenge at the 28th Conference on Computational Natural Language Learning*.
- Chesi, Cristiano & Bianchi, Valentina 2014. Subject islands, reconstruction, and the flow of the computation. *Linguistic Inquiry* 45,4. 525-569.
- Chesi, Cristiano & Moro, Andrea 2015. The subtle dependency between Competence and Performance. *MIT Working Papers In Linguistics* 77. 33-46.
- Chesi, Cristiano; Vespignani, Francesco & Zamparelli, Roberto *to appear*. Large language models under evaluation: An acceptability, complexity and coherence assessment in Italian. *Italian Journal of Computational Linguistics*.
- Chierchia, Gennaro 1998. Reference to kinds across languages. *Natural Language Semantics* 6. 339-405.
- Cho, Kyunghyun; van Merriënboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk, Holger & Bengio, Yoshua 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Moschitti, Alessandro; Pang, Bo & Daelemans, Walter (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing*. Doha, Qatar: Association for Computational Linguistics. 1724-1734. <DOI: 10.3115/v1/D14-1179>.
- Chomsky, Noam 1956. Three models for the description of language. *IEEE Transactions on Information Theory* 2,3. 113-124. <doi.org/10.1109/TIT.1956.1056813>.
- Chomsky, Noam 1957. *Syntactic Structures*. Berlin: Mouton de Gruyter.
- Chomsky, Noam 1959. A Review of B. F. Skinner's Verbal Behavior. *Language* 35,1. 26. <doi.org/10.2307/411334>.
- Chomsky, Noam 1964. *Current Issues in Linguistic Theory*. Berlin: De Gruyter.
- Chomsky, Noam 1965. *Aspects of the Theory of Syntax* (Vol. 11). Cambridge, MA: MIT Press.

- Chomsky, Noam 1966. *Cartesian Linguistics: A Chapter in the History of Rationalist Thought*. New York, NY: Harper & Row.
- Chomsky, Noam 1968. *Language and Mind*. New York, NY: Harcourt, Brace & World.
- Chomsky, Noam 1968b. Quine's Empirical Assumptions. *Synthese* 19,1-2. 53-68. <doi.org/10.1007/bf00568049>.
- Chomsky, Noam 1969. Quine's empirical assumptions. In Davidson, Donald & Hintikka, Jaakko (eds.), *Words and Objections: Essays on the Work of W.V. Quine*. Dordrecht, Netherlands: Springer Dordrecht. 53-68. <DOI: 10.1007/978-94-010-1709-1_5>.
- Chomsky, Noam 1975. *Questions on Form and Interpretation*. Lisse: Peter de Ridder. <doi.org/10.1007/978-3-642-14322-9_2>.
- Chomsky, Noam 1981. *Lectures on government and binding: The Pisa lectures*. Walter de Gruyter.
- Chomsky, Noam 1986. *Knowledge of language: Its nature, origin, and use*. New York: Praeger.
- Chomsky, Noam 1995. *The minimalist program*. Cambridge, MA: MIT Press.
- Chomsky, Noam 1995b. Language and Nature. *Mind* 104 (413). 1-61.
- Chomsky, Noam 2001. Derivation by phase. In Kenstowicz, Michael (ed.), *Ken Hale: A life in language*. Cambridge, MA: MIT Press. 1-52.
- Chomsky, Noam A. 2004. *The generative enterprise revisited. Discussions with Riny Huybregts, Henk van Riemsdijk, Naoki Fukui and Mihoko Zushi*. De Gruyter Mouton.
- Chomsky, Noam A. 2005. Three Factors in Language Design. *Linguistic Inquiry* 36,1. 1-22.
- Chomsky, Noam 2008. On phases. In Freidin, Robert; Otero, Carlos P. & Zubizarreta, Maria Luisa (eds.), *Foundational issues in linguistic theory: Essays in Honor of Jean-Roger Vergnaud* (Vol. 45). Cambridge, MA: MIT Press. 133-166.
- Chomsky, Noam 2012. Language and Limits of Understanding. <www.nets.iusspavia.it/dox/chomsky2012-LLU-IUSS_Pavia.pdf>.
- Chomsky, Noam 2013. Problems of projection. *Lingua* 130. 33-49.
- Chomsky, Noam 2015. Problems of projection: Extensions. In Di Domenico, Elisa; Hamann, Cornelia & Matteini, Simona (eds.), *Linguistik Aktuell/Linguistics Today* (Vol. 223). Amsterdam: John Benjamins. 1-16. <doi.org/10.1075/la.223.01cho>.
- Chomsky, Noam 2021a. Simplicity and the form of grammars. *Journal of Language Modelling* 9,1. <doi.org/10.15398/jlm.v9i1.257>.
- Chomsky, Noam 2021b. Minimalism: where are we now, and where can we hope to go. *Gengo Kenkyu* 160. 1-42.
- Chomsky, Noam 2024. The Miracle Creed and SMT. In Greco, M. & Moccia, D. (eds.), *A Cartesian dream: A geometrical account of syntax: In honor of Andrea Moro*. Rivista di Grammatica Generativa / Research in Generative Grammar 17-40.
- Chomsky, Noam & Lasnik, Howard 1977. Filters and Control. *Linguistic*

- Inquiry* 8,3. 425-504.
- Chomsky, Noam; Roberts, Ian & Watumull, Jeffrey 2023. Noam Chomsky: The False Promise of ChatGPT. *New York Times* 8 March.
- Chomsky, Noam; Seely, T. Daniel; Berwick, Robert C.; Fong, Sandiway; Huybregts, M. A. C.; Kitahara, Hisatsugu; McInnerney, Andrew & Sugimoto, Yushi 2023. *Merge and the Strong Minimalist Thesis* (1st ed.). Cambridge: Cambridge University Press. <doi.org/10.1017/9781009343244>.
- Chowdhury, Shammur Absar & Zamparelli, Roberto 2018. RNN Simulations of Grammaticality Judgments on Long-distance Dependencies. *Proceedings of the 27th International Conference on Computational Linguistics*. 133-144. <aclanthology.org/C18-1012>.
- Cinque, Guglielmo 1999. *Adverbs and functional heads: A cross-linguistic perspective*. Oxford, UK: Oxford University Press.
- Cinque, Guglielmo 2002. *Functional Structure in DP and IP: The Cartography of Syntactic Structures, Volume 1*. Oxford, UK: Oxford University Press.
- Cinque, Guglielmo 2005. Deriving Greenberg's Universal 20 and Its Exceptions. *Linguistic Inquiry* 36,3. 315-332. <doi.org/10.1162/0024389054396917>.
- Cinque, Guglielmo & Rizzi, Luigi 2010. The Cartography of Syntactic Structures. In Heine, B. & Narrog, H. (eds.), *The Oxford Handbook of Linguistic Analysis*. Oxford / New York: Oxford University Press. 51-65.
- Clark, Alexander & Lappin, Shalom 2010. Computational learning theory and language acquisition. *Philosophy of Linguistics*. 445-475.
- Clark, Alexander & Lappin, Shalom 2011. *Linguistic Nativism and the Poverty of the Stimulus*. Chichester: Wiley-Blackwell.
- Clifton, Charles Jr; Ferreira, Fernanda; Henderson, John M.; Inhoff, Albrecht W.; Liversedge, Simon P.; Reichle, Erik D. & Schotte, Elizabeth R. 2015. Eye movements in reading and information processing. *Journal of Memory and Language* 86. 1-19.
- Collins, Chris; Kayne, Richard & Koopman, Hilda 2009. *Syntactic structures of the world's languages (SSWL)*. <terraling.com/groups/7>.
- Collins, Chris & Stabler, Edward P. 2016. A Formalization of Minimalist Syntax. *Syntax* 19,1. 43-78. <doi.org/10.1111/synt.12117>.
- Collins, Joe 2024. The simple reason LLMs are not scientific models (and what the alternative is for linguistics). <lingbuzz.net/lingbuzz/008026>.
- Conneau, Alexis; Kruszewski, German; Lample, Guillaume; Barrault, Loïc & Baroni, Marco 2018. What you can cram into a single \$&#!#* vector: Probing sentence embeddings for linguistic properties. In Gurevych, Iryna & Miyao, Yusuke (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Melbourne, Australia: Association for Computational Linguistics. 2126-2136. <DOI: 10.18653/v1/P18-1198>.
- Corbett, Greville G. 2010. Implicational hierarchies. In Song, Jae

- Jong (ed.), *The Oxford Handbook of Linguistic Typology*. Oxford: Oxford University Press. 190-205. <doi.org/10.1093/oxfordhb/9780199281251.013.0011>.
- Cottier, Ben; Rahman, Robi; Fattorini, Loredana; Maslej, Nestor; Besiroglu, Tamay & Owen, David 2025. The rising costs of training frontier AI models. <arXiv:2405.21015>.
- Crain, Stephen & Nakayama, Mineharu 1987. Structure Dependence in Grammar Formation. *Language* 63,3. 522. <doi.org/10.2307/415004>.
- Crain, Stephen & Thornton, Rosalind 2021. Universal grammar and language acquisition. In Allot, Nicholas; Lohndahl, Terje & Rey, Georges (eds.), *A Companion to Chomsky*. Wiley. <doi.org/10.1002/9781119598732.ch21>.
- Crawford, Kate 2024. Generative AI's environmental costs are soaring – and mostly secret. *Nature* 626. 693. <DOI: 10.1038/d41586-024-00478-x>.
- Crystal, David 2011. *Internet Linguistics: A Student Guide*. London: Routledge.
- Cutler, Anne & Fodor, Jerry A. 1979. Semantic focus and sentence comprehension. *Cognition* 7. 49-59. <doi.org/10.1016/0010-0277(79)90010-6>.
- Cybenko, George 1989 Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals and systems* 2,4. 303-314.
- Dahl, Östen 2020. Morphological complexity and the minimum description length approach. In Arkadiev, Peter & Gardani, Francesco (eds.), *The complexities of morphology*. Oxford: Oxford University Press. 331-343.
- D'Alessandro, Roberta 2019. The achievements of Generative Syntax: A time chart and some reflections. *Catalan Journal of Linguistics*. 7-26.
- Dalrymple, Mary (ed.) 2023. *The Handbook of Lexical Functional Grammar: Empirically Oriented Theoretical Morphology and Syntax*. Berlin: Language Science Press. <10.5281/zenodo.10037797>.
- Dalrymple, Mary; Gupta, Vineet; Lampert, John & Saraswat, Vijay 1999. Relating resource-based semantics to categorial semantics. In Dalrymple, Mary (ed.), *Semantics and syntax in Lexical Functional Grammar: The resource logic approach*. Language, Speech, and Communication. Cambridge, MA: MIT Press. 261-280.
- Dalrymple, Mary; Patejuk, Agnieszka & Zymla, Mark-Matthias 2020. XLE + Glue – A new tool for integrating semantic analysis in XLE. In Butt, Miriam & Toivonen, Ida (eds.), *Proceedings of the LFG'20 Conference*. Stanford, CA: CSLI Publications. 89-108. <cslipublications.stanford.edu/LFG/2020/lfg2020-dpz.pdf>.
- De Santo, Aniello 2019. Testing a Minimalist Grammar Parser on Italian Relative Clause Asymmetries. *Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics*. 93-104. <doi.org/10.18653/v1/W19-2911>.
- De Santo, Aniello 2020. Structure and memory: A computational model of storage, gradience, and priming. PhD dissertation. Stony Brook University.

- Deacon, Terence W. 1997. *The symbolic species: The co-evolution of language and the human brain*. Allen Lane: The Penguin Press.
- Delétang, Grégoire; Ruoss, Anian; Grau-Moya, Jordi; Genewein, Tim; Wenliang, Li Kevin; Catt, Elliot; Cundy, Chris *et al.* 2022. Neural Networks and the Chomsky Hierarchy. <doi.org/10.48550/ARXIV.2207.02098>.
- Demirci, Ozge; Hannane, Jonas & Zhu, Xinrong 2024. Who is AI replacing? The impact of Generative AI on online freelancing platforms. *SSRN Electronic Journal*. <DOI: 10.2139/ssrn.4991774>.
- Demirdache, H.; Hornstein, N.; Lasnik, H.; May, R.; Rizzi, L. 2024. Structured Sentences and the Computational Theory of Mind: Roundtable. In *Festschrift for Howard Lasnik*. Cambridge: Cambridge University Press.
- Dennett, Daniel C. 1978. Why you can't make a computer that feels pain. *Synthese* 38. 415-456.
- Dentella, Vittoria; Günther, Fritz & Leivada, Evelina 2023. Systematic testing of three Language Models reveals low language accuracy, absence of response stability, and a yes-response bias. *Proceedings of the National Academy of Sciences* 120,51. e2309583120. <doi.org/10.1073/pnas.2309583120>.
- Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton & Toutanova, Kristina 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Burstein, Jill; Doran, Christy & Solorio, Thamar (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. Vol. 1. Minneapolis, MN: Association for Computational Linguistics. 4171-4186. <DOI: 10.18653/v1/N19-1423>.
- Dijkstra, Edsger W. 1982. *Selected Writings on Computing*. Berlin: Springer.
- Dobson, James E. 2023. On reading and interpreting black box deep neural networks. *International Journal of Digital Humanities* 5. 431-449. <DOI: 10.1007/s42803-023-00075-w>.
- Dryer, Matthew S. 2006. Descriptive theories, explanatory theories, and basic linguistic theory. In Ameka, Felix K.; Dench, Alan & Evans, Nicholas (eds.), *Catching language: The standing challenge of grammar writing*. Berlin: Mouton de Gruyter. 207-234. <www.acsu.buffalo.edu/~dryer/desc.expl.theories.pdf>.
- Dryer, Matthew & Haspelmath, Martin 2022. *The World Atlas of Language Structures Online* (v2020.3) [dataset]. Zenodo. <doi.org/10.5281/ZENODO.7385533>.
- Edinger, Harald 2022. Offensive ideas: structural realism, classical realism and Putin's war on Ukraine. *International Affairs* 98,6. 1873-1893. <DOI: 10.1093/ia/iiac217>.
- Elman, Jeffrey L. 1990. Finding Structure in Time. *Cognitive Science* 14,2. 179-211. <doi.org/10.1207/s15516709cog1402_1>.
- Elman, Jeffrey L. 1991. Distributed representations, simple recurrent net-

- works, and grammatical structure. *Machine Learning* 7,2. 195-225. <DOI: 10.1023/A:1022699029236>.
- Elman, Jeffrey L. 1993. Learning and development in neural networks: The importance of starting small. *Cognition* 48,1. 71-99. <doi.org/10.1016/0010-0277(93)90058-4>.
- Engelfriet, Joost; Lilin, Eric & Maletti, Andreas 2009. Extended multi bottom-up tree transducers: Composition and decomposition. *Acta Informatica* 46. 561-590. <doi.org/10.1007/s00236-009-0105-8>.
- Epstein, Samuel David; Groat, Erich M.; Kawashima, Ruriko & Kitahara, Hisatsugu (eds.) 1998. *A derivational approach to syntactic relations*. Oxford, UK: Oxford University Press.
- Ermolaeva, Marina 2023. Evaluating syntactic proposals using Minimalist grammars and minimum description length. *Journal of Language Modelling* 11. 67-119. <doi.org/10.15398/jlm.v11i1.334>.
- Espinal, Maria Teresa & Cyrino, Sonia 2022. A syntactically-driven approach to indefiniteness, specificity and antispecificity in Romance. *Journal of Linguistics* 58. 535-570.
- Ettinger, Allyson 2020. What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. *Transactions of the Association for Computational Linguistics* 8. 34-48. <doi.org/10.1162/tacl a 00298>.
- Evans, Lyndon 2007. The Large Hadron Collider. *New Journal of Physics* 9,9. 335-335. <doi.org/10.1088/1367-2630/9/9/335>.
- Evans, Nicholas & Levinson, Stephen C. 2009. The myth of language universals: Language diversity and its importance for cognitive science. *Behavioral and Brain Sciences* 32,5. 429-448. <DOI:10.1017/S0140525X0999094X>.
- Evanson, Linnea; Lakretz, Yair & King, Jean-Rémi 2023. Language acquisition: do children and language models follow similar learning stages? <arXiv:2306.03586>.
- Fazi, M. Beatrice 2021. Beyond human: Deep learning, explainability and representation. *Theory, Culture & Society* 38. 55-77.
- Feyerabend, Paul K. 1962. Explanation, reduction, and empiricism. In Feigl, Herbert & Maxwell, Grover (eds.), *Scientific explanation, space, and time*. Vol. 3. Minneapolis, MN: University of Minnesota Press. 28-97.
- Fisher, Cynthia 2002. The role of abstract syntactic knowledge in language acquisition: A reply to Tomasello (2000). *Cognition* 82. 259-278.
- Fleck, Ludwik 1935. *Entstehung und Entwicklung einer wissenschaftlichen Tatsache: Einführung in die Lehre vom Denkstil und Denkkollektiv*. Basel, Switzerland: Benno Schwabe & Co.
- Fodor, Janet Dean 1998. Unambiguous triggers. *Linguistic Inquiry* 29. 1-36.
- Fodor, Jerry A. 1980. *The Language of Thought*. Harvard: Harvard University Press.
- Fodor, Jerry A. 1983. *The modularity of mind: An essay on faculty psychology*. Cambridge, MA: MIT Press.

- Fodor, Jerry A. 2010. *LOT 2: The Language of Thought Revisited*. Oxford, UK: Oxford University Press.
- Fodor, Jerry A. & Bever, Thomas G. 1965. The psychological reality of linguistic segments. *Journal of Verbal Learning and Verbal Behavior* 4. 414-420. <doi.org/10.1016/s0022-5371(65)80081-0>.
- Fong, Sandiway 1991. *Computational properties of principle-based grammatical theories*. PhD dissertation. MIT, Cambridge (MA).
- Fong, Sandiway & Ginsburg, Jason 2012. Computation with doubling constituents: Pronouns and antecedents in Phase Theory. In Di Sciullo, Anna Maria (ed.), *Towards a Biolinguistic Understanding of Grammar: Essays on interfaces*. Amsterdam: John Benjamins. 303-338.
- Fong, Sandiway & Ginsburg, Jason 2014. A new approach to tough-constructions. In Santana-LaBarge, Robert E (ed.), *Proceedings of the 31st West Coast Conference on Formal Linguistics (WCCFL 31)*. Somerville, MA: Cascadilla Proceedings Project. 180-188.
- Fong, Sandiway & Ginsburg, Jason 2019. Towards a Minimalist Machine. In Berwick, Robert C. & Stabler, Edward P. (eds.), *Minimalist Parsing*. Oxford: Oxford University Press. 16-38.
- Fong, Sandiway & Ginsburg, Jason 2023. On the computational modeling of English relative clauses. *Open Linguistics* 9. 1-35. <DOI: 10.1515/olip-2022-0246>.
- Forster, Kenneth I.; Guerrera, Christine & Elliot, Lisa 2009. The maze task: Measuring forced incremental sentence processing time. *Behavior Research Methods* 41,1. 163-171. <doi.org/10.3758/BRM.41.1.163>.
- Fox, Danny & Karzir, Roni 2024. Large Language Models and Theoretical Linguistics. *Theoretical Linguistics* 50. 71-76. <DOI: 10.1515/tl-2024-2005>.
- Fox, Danny & Nissenbaum, Jon 1999. Extrapolation and scope: A case for overt QR. *Proceedings of the 18th West Coast Conference on Formal Linguistics* 18,2. 132-144.
- Fox, Melvin J. & Skolnick, Betty P. 1975. *Language in Education: Problems and Prospects in Research and Teaching*. New York, NY: Ford Foundation.
- Frampton, John & Gutmann, Sam 2002. Crash-Proof Syntax. In Epstein, Samuel David & Seely, T. Daniel (eds.), *Derivation and Explanation in the Minimalist Program* (1st ed.). Wiley. 90-105. <doi.org/10.1002/9780470755662.ch5>.
- Frank, Anette; Holloway King, Tracy; Kuhn, Jonas & Maxwell, John T. III 2001. Optimality theory style constraint ranking in large-scale LFG grammars. In Sells, Peter (ed.), *Formal and Empirical Issues in Optimality Theory*. Stanford: CSLI Publications. 367-397.
- Frank, Robert 1990. Licensing and tree adjoining grammar in government binding parsing. *28th Annual Meeting of the Association for Computational Linguistics*. 111-118.
- Frank, Robert 2002. *Phrase structure composition and syntactic dependencies*. Cambridge, MA: MIT Press.

- Frankle, Jonathan & Carbin, Michael 2019. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *ICLR 2019 Conference Track*. New Orleans, LA: OpenReview.
- Friedmann, Naama; Belletti, Adriana & Rizzi, Luigi 2009. Relativized relatives: Types of intervention in the acquisition of A-bar dependencies. *Lingua* 119,1. 67-88.
- Fusco, Achille; Barbini, Matilde; Piccini Bianchessi, Maria Letizia; Bressan, Veronica; Neri, Sofia; Rossi, Sarah; Sgrizzi, Tommaso & Chesi, Cristiano 2024. Recurrent Networks Are (Linguistically) Better? An Experiment on Small-LM Training on Child-Directed Speech in Italian. In *Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024)*. Aachen: CEUR.
- Futrell, Richard; Gibson, Edward & Levy, Roger P. 2020. Lossy-Context Surprisal: An Information-Theoretic Model of Memory Effects in Sentence Processing. *Cognitive Science* 44,3. <doi.org/10.1111/cogs.12814>.
- Futrell, Richard & Levy, Roger 2017. Noisy-context surprisal as a human sentence processing cost model. *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers*. 688-698.
- Futrell, Richard; Wilcox, Ethan; Morita, Takashi; Qian, Peng; Ballesteros, Miguel & Levy, Roger 2019. Neural language models as psycholinguistic subjects: Representations of syntactic state. <arXiv:1903.03260>.
- Gauthier, Jon; Hu, Jennifer; Wilcox, Ethan; Qian, Peng & Levy, Roger 2020. SyntaxGym: An online platform for targeted evaluation of language models. In Celikyilmaz, Asli & Wen, Tsung-Hsien (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations*. Online: Association for Computational Linguistics. 70-76. <DOI: 10.18653/v1/2020.acl-demos.10>.
- Gehrke, Berit & McNally, Louise 2019. Idioms and the syntax/semantics interface of descriptive content vs. reference. *Linguistics* 57,4. 769-814. <10.1515/ling-2019-0016>.
- Gerth, Sabrina 2015. Memory limitations in sentence comprehension. A structure-based complexity metric of processing difficulty. PhD dissertation. University of Potsdam.
- Gianollo, Chiara; Guardiano, Cristina & Longobardi, Giuseppe 2008. Three fundamental issues in parametric linguistics. In Biberauer, Theresa (ed.), *Linguistik Aktuell/Linguistics Today* (Vol. 132). Amsterdam: John Benjamins. 109-142. <doi.org/10.1075/la.132.05gia>.
- Gibson, Edward; Futrell, Richard; Piantadosi, Steven T.; Dautriche, Isabelle; Mahowald, Kyle; Bergen, Leon & Levy, Roger 2019. How efficiency shapes human language. *Trends in Cognitive Sciences* 23,5. 389-407. <doi:10.1016/j.tics.2019.02.003>.
- Gibson, Edward & Wexler, Ken 1994. Triggers. *Linguistic Inquiry* 25,3. 407-454.
- Gilkerson, Jill *et al.* 2017. Mapping the early language environment using

- all-day recordings and automated analysis. *American Journal of Speech-Language Pathology* 26. 248-265. <DOI: 10.1044/2016_AJSLP-15-016>.
- Ginsburg, Jason 2016. Modeling of Problems of Projection: A non-circular approach. *Glossa: A Journal of General Linguistics* 1,1:7. 1-46. <DOI: 10.5334/gjgl.22>.
- Ginsburg, Jason 2024. Constraining free Merge. *Biolinguistics* 18, e14015. 1-60. <DOI: 10.5964/bioling.14015>.
- Ginsburg, Jason & Fong, Sandiway 2019. Combining linguistic theories in a Minimalist Machine. In Stabler, Edward P. & Berwick, Robert C. (eds.), *Minimalist Parsing*. Oxford, UK: Oxford University Press. 39-68. <doi.org/10.1093/oso/9780198795087.003.0003>.
- Giusti, Giuliana 2015. *Nominal Syntax at the Interfaces: A Comparative Analysis of Languages With Articles*. Cambridge: Cambridge Scholars Publishing.
- Gold, E. Mark 1967. Language identification in the limit. *Information and Control* 10,5. 447-474. <doi.org/10.1016/S0019-9958(67)91165-5>.
- Goldsmith, John & Riggle, Jason 2012. Information theoretic approaches to phonological structure: The case of Finnish vowel harmony. *Natural Language and Linguistic Theory* 30. 859-896.
- Gorman, Kyle 2016. Pynini: A Python library for weighted finite-state grammar compilation. In *Procs. SIGFSM Workshop on Statistical NLP and Weighted Automata*. <doi.org/10.18653/v1/W16-2409>.
- Goyal, Anirudh & Bengio, Yoshua 2022. Inductive Biases for Deep Learning of Higher-Level Cognition. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* 478 (2266). <doi.org/10.1098/rspa.2021.0068>.
- Graf, Thomas 2020. Curbing feature coding: Strictly local feature assignment. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2020*. 362-371.
- Graf, Thomas 2022c. Typological implications of tier-based strictly local movement. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2022*. 184-193.
- Graf, Thomas 2022b. Subregular linguistics: Bridging theoretical linguistics and formal grammar. *Theoretical Linguistics* 48. 145-184. <doi.org/10.1515/tl-2022-2037>.
- Graf, Thomas 2022a. Diving deeper into subregular syntax. *Theoretical Linguistics* 48. 245-278. <doi.org/10.1515/tl-2022-2043>.
- Graf, Thomas 2023. Subregular tree transductions, movement, copies, traces, and the ban on improper movement. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2023*. 289-299. <doi.org/10.7275/tk1n-q855>.
- Graf, Thomas *to appear*. Minimalism and computational linguistics. In Grohman, Kleanthes K. & Leivada, Evelina (eds.), *Handbook of Minimalism*. Cambridge: Cambridge University Press.
- Graf, Thomas & Abner, Natasha 2012. Is syntactic binding rational?

- In *Proceedings of the 11th international workshop on Tree Adjoining Grammars and related formalisms (TAG + 11)*. 189-197.
- Graf, Thomas & Kostyszyn, Kalina 2021. Multiple wh-movement is not special: The subregular complexity of persistent features in Minimalist grammars. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2021*. 275-285.
- Graf, Thomas & Mayer, Connor 2018. Sanskrit n-retroflexion is input-output tier-based strictly local. In *Proceedings of SIGMORPHON 2018*. 151-160.
- Graf, Thomas; Monette, James & Zhang, Chong 2017. Relative clauses as a benchmark for Minimalist parsing. *Journal of Language Modelling* 5.1. 57-106. <doi.org/10.15398/jlm.v5i1.157>.
- Graf, Thomas & Shafiei, Nazila 2019. C-command dependencies as TSL string constraints. In Jarosz, Gaja; Nelson, Max; O'Connor, Brendan & Pater, Joe (eds.), *Proceedings of the Society for Computation in Linguistics (SCiL) 2019*. 205-215.
- Grice, Herbert Paul 1975. Logic and conversation. In Cole, Peter & Morgan, Jerry L. (eds.), *Syntax and Semantics*. New York, NY: Academic Press. 41-58.
- Grillo, Nino 2008. *Generalized minimality: Syntactic underspecification in Broca's aphasia*. LOT.
- Grünwald, Peter D. 2007. *The minimum description length principle*. Cambridge, MA: MIT Press.
- Guardiano, Cristina & Longobardi, Giuseppe 2016. Parameter Theory and Parametric Comparison. In Roberts, Ian (ed.), *The Oxford Handbook of Universal Grammar*. Oxford, UK: Oxford University Press. 376-398. <doi.org/10.1093/oxfordhb/9780199573776.013.16>.
- Guardiano, Cristina; Longobardi, Giuseppe; Cordoni, Guido & Crisma, Paola 2020. Formal Syntax as a Phylogenetic Method. In Janda, Richard D.; Joseph, Brian D. & Vance, Barbara S. (eds.), *The Handbook of Historical Linguistics* (1st ed.). Wiley. 145-182. <doi.org/10.1002/9781118732168.ch7>.
- Guasti, Maria Teresa 2017. *Language acquisition: The growth of grammar*. Cambridge, MA: MIT Press.
- Guérin, Jacqueline & May, Robert 1984. Extraposition and Logical Form. *Linguistic Inquiry* 15.1. 1-31.
- Gulordava, Kristina; Bojanowski, Piotr; Grave, Edouard; Linzen, Tal & Baroni, Marco 2018. Colorless green recurrent networks dream hierarchically. In Walker, Marilyn; Ji, Heng & Stent, Amanda (eds.), *Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. New Orleans, LA: Association for Computational Linguistics. 1195-1205. <[DOI: 10.18653/v1/N18-1108](https://doi.org/10.18653/v1/N18-1108)>.
- Haider, Hubert 2023. Is Chat-GPT a grammatically competent informant? <lingbuzz/007285>.
- Hale, John 2001. A Probabilistic Earley Parser as a Psycholinguistic Model.

- Second Meeting of the North American Chapter of the Association for Computational Linguistics.* <aclanthology.org/N01-1021>.
- Hale, John 2011. What a rational parser would do. *Cognitive Science* 35,3. 399-443.
- Hale, John 2016. Information-theoretical Complexity Metrics. *Language and Linguistics Compass* 10,9. 397-412. <doi.org/10.1111/lnc3.12196>.
- Hanson, Kenneth 2025. Tier-based strict locality and the typology of agreement. *Journal of Language Modelling* 13,1. 43-97. <doi.org/10.15398/jlm.v13i1.411>.
- Hanson, Kenneth 2024. Tiers, paths, and syntactic locality: The view from learning. In *Proceedings of the society for computation in linguistics (SCiL) 2024*. 107-116. <doi.org/10.7275/scil.2135>.
- Hao, Sophie 2022. *Theory and Applications of Attribution for Interpretable Language Technology*. PhD dissertation. Yale University, New Haven, CT.
- Hao, Sophie; Angluin, Dana & Frank, Robert 2022. Formal language recognition by hard attention transformers: Perspectives from circuit complexity. *Transactions of the Association for Computational Linguistics* 10. 800-810. <DOI: 10.1162/tacl_a_00490>.
- Hao, Sophie; Mendelsohn, Simon; Sterneck, Rachel; Martinez, Randi & Frank, Robert 2020. Probabilistic predictions of people perusing: Evaluating metrics of language model performance for psycholinguistic modeling. In Chersoni, Emmanuele; Jacobs, Cassandra; Oseki, Yohei; Prévot, Laurent & Santus, Enrico (eds.), *Workshop on Cognitive Modeling and Computational Linguistics*. Online: Association for Computational Linguistics.
- Hao, Sophie & Andersson, Samuel 2019. Unbounded stress in subregular phonology. In *Proceedings of the 16th Sigmorphon workshop on computational research in phonetics, phonology and morphology*. 135-143. <doi.org/10.18653/v1/W19-4216>.
- Hart, Betty & Risley, Todd R. 1992. American parenting of language-learning children: Persisting differences in family-child interactions observed in natural home environments. *Developmental Psychology* 28,6. 1096-1105. <doi.org/10.1037/0012-1649.28.6.1096>.
- Haspelmath, Martin 1993. *A grammar of Lezgian*. Mouton Grammar Library 9. Berlin: Mouton de Gruyter.
- Haspelmath, Martin 2007. Pre-established categories don't exist – consequences for language description and typology. *Linguistic Typology* 11. 119-132.
- Haspelmath, Martin 2008. Parametric versus functional explanations of syntactic universals. In Biberauer, Theresa (ed.), *The limits of syntactic variation*. Amsterdam: Benjamins. Accessed 27 May 2016.
- Haspelmath, Martin 2010a. Comparative concepts and descriptive categories in crosslinguistic studies. *Language* 86,3. 663-687. <[doi:10.1353/lan.2010.0021](https://doi.org/10.1353/lan.2010.0021)>.
- Haspelmath, Martin 2010b. Framework-free grammatical theory. In Heine,

- Bernd & Narrog, Heiko (eds.), *The Oxford Handbook of Linguistic Analysis*. Oxford: Oxford University Press. 341-365.
- Haspelmath, Martin 2018. How comparative concepts and descriptive linguistic categories are different. In Van Olmen, Daniël; Mortelmans, Tanja & Brisard, Frank (eds.), *Aspects of linguistic variation: Studies in honor of Johan van der Auwera*. Berlin: De Gruyter Mouton. 83-113. <zenodo.org/record/3519206>.
- Haspelmath, Martin 2020. Human linguisticity and the building blocks of languages. *Frontiers in Psychology* 10,3056. 1-10. <[doi:10.3389/fpsyg.2019.03056](https://doi.org/10.3389/fpsyg.2019.03056)>.
- Haspelmath, Martin 2021. General linguistics must be based on universals (or nonconventional aspects of language). *Theoretical Linguistics* 47,1-2. 1-31. <[doi:10.1515/tl-2021-2002](https://doi.org/10.1515/tl-2021-2002)>.
- Haspelmath, Martin *to appear*. Breadth versus depth: Theoretical reasons for system-independent comparison of languages. In Nefdt, Ryan (ed.), *Oxford Handbook of Philosophy of Linguistics*. Oxford: Oxford University Press. <ling.auf.net/lingbuzz/008437>.
- Hauser, M. D.; Chomsky, N. & Fitch, W. T. 2002. The faculty of language: What is it, who has it, and how did it evolve? *Science* 298 (5598). 1569-1579. <doi.org/10.1126/science.298.5598.1569>.
- Hawkins, John A. 2014. *Cross-linguistic variation and efficiency*. New York: Oxford University Press.
- Heim, Johannes & Wiltschko, Martina 2025. Rethinking structural growth: Insights from the acquisition of interactional language. *Glossa: A journal of general linguistics* 10,1. <doi.org/10.16995/glossa.16396>.
- Heinz, Jeffrey 2010. Learning long-distance phonotactics. *Linguistic Inquiry* 41. 623-661. <doi.org/10.1162/LING_a_00015>.
- Heinz, Jeffrey 2018. The computational nature of phonological generalizations. In Hyman, Larry & Plank, Frank (eds.), *Phonological typology*. Mouton De Gruyter. 126-195.
- Hewitt, John & Manning, Christopher D. 2019. A structural probe for finding syntax in word representation. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. 4129-4138.
- Hey, Tony; Tansley, Stewart; Tolle, Kristin & Gray, Jim (eds.) 2009. *The Fourth Paradigm: Data-Intensive Scientific Discovery*. Redmond, WA: Microsoft Research.
- Hinton, Geoffrey 2022. The forward-forward algorithm: Some preliminary investigations. <[arXiv:2212.13345](https://arxiv.org/abs/2212.13345)>.
- Hochreiter, Sepp; Bengio, Yoshua; Frasconi, Paolo & Schmidhuber, Jürgen 2001. Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In Kremer, S. C. & Kolen, J. F. (eds.), *A Field Guide to Dynamical Recurrent Neural Networks*. IEEE Press.
- Hochreiter, Sepp & Schmidhuber, Jürgen 1997. Long short-term memory. *Neural Computation* 9,8. 1735-1780.

- Hockenmaier, Julia & Steedman, Mark 2007. CCGbank: A corpus of CCG derivations and dependency structures extracted from the Penn Treebank. *Computational Linguistics* 33,3. 355-396. <DOI: 10.1162/coli.2007.33.3.355>.
- Holmes, V. M. & Forster, K. 1972. Click location and syntactic structure. *Perception and Psychophysics* 12. 9-15. <doi.org/10.3758/bf03212836>.
- Hornik, Kurt; Stinchcombe, Maxwell & White, Halbert 1989. Multilayer Feedforward Networks Are Universal Approximators. *Neural Networks* 2,5. 359-66. <[doi.org/10.1016/0893-6080\(89\)90020-8](https://doi.org/10.1016/0893-6080(89)90020-8)>.
- Hosseini, Eghbal A. *et al.* 2024. Artificial neural network language models align neurally and behaviorally with humans even after a developmentally realistic amount of training. *Neurobiology of Language*. Apr 1.5,1. 43-63.
- Hsu, Anne S. & Chater, Nick 2010. The Logical Problem of Language Acquisition: A Probabilistic Perspective. *Cognitive Science* 34,6. 972-1016. <doi.org/10.1111/j.1551-6709.2010.01117.x>.
- Hsu, Anne S.; Chater, Nick & Vitányi, Paul 2013. Language Learning From Positive Evidence, Reconsidered: A Simplicity-Based Approach. *Topics in Cognitive Science* 5,1. 35-55. <doi.org/10.1111/tops.12005>.
- Hu, Jennifer; Gauthier, Jon; Qian, Peng; Wilcox, Ethan & Levy, Roger 2020. A Systematic Assessment of Syntactic Generalization in Neural Language Models. In Jurafsky, Dan; Chai, Joyce; Schluter, Natalie & Tetreault, Joel (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics. 1725-1744. <doi.org/10.18653/v1/2020.acl-main.158>.
- Hu, Michael Y.; Mueller, Aaron; Ross, Candace; Williams, Adina; Linzen, Tal; Zhuang, Chengxu; Cotterell, Ryan; Choshen, Leshem; Warstadt, Alex & Wilcox, Ethan 2024. Findings of the Second BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora. <doi.org/10.48550/ARXIV.2412.05149>.
- Huang, C.-T. James 1982. *Logical relations in Chinese and the theory of grammar*. Cambridge, MA: MIT Press.
- Huang, Lei; Yu, Weijiang; Ma, Weitao; Zhong, Weihong; Feng, Zhangyin; Wang, Haotian; Chen, Qianglong; Peng, Weihua; Feng, Xiaocheng; Qin, Bing *et al.* 2023. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. <[arXiv:2311.05232](https://arxiv.org/abs/2311.05232)>.
- Huh, Minyoung; Cheung, Brian; Wang, Tongzhou & Isola, Phillip 2024. Position: The Platonic Representation Hypothesis. In Salakhutdinov, Ruslan; Kolter, Zico; Heller, Katherine; Weller, Adrian; Oliver, Nuria; Scarlett, Jonathan & Berkenkamp, Felix (eds.), *Proceedings of the 41st International Conference on Machine Learning*. 235. 20617-42. Proceedings of Machine Learning Research. PMLR. <proceedings.mlr.press/v235/huh24a.html>.
- Hume, David 1739. *A Treatise of Human Nature: Being an Attempt to Introduce*

- the Experimental Method of Reasoning Into Moral Subjects*. London: John Noon.
- Hume, David 1748. *Philosophical Essays Concerning Human Understanding*. London: A. Millar.
- Hunter, Tim; Stanojević, Miloš & Stabler, Edward P. 2019. The active-filler strategy in a move-eager left-corner Minimalist grammar parser. In *Proceedings of the workshop on cognitive modeling and computational linguistics*. 1-10.
- Ibbotson, Paul & Tomasello, Michael 2016. Evidence rebuts Chomsky's theory of language learning. *Scientific American* 315, 5. 70.
- İdrisoğlu, İşıl & Spaniel, William 2024. *Information problems and Russia's invasion of Ukraine*. *Conflict Management and Peace Science* 41,5. 514-533. <DOI: 10.1177/07388942241238583>.
- Ionin, Tania & Matushansky, Ora 2006. The composition of complex cardinals. *Journal of Semantics* 16. 315-360.
- Jackendoff, Ray 1988. Why are they saying these things about us? *Natural Language and Linguistic Theory* 6,3. 435-442.
- Jardine, Adam 2016. Computationally, tone is different. *Phonology* 33. 247-283. <doi.org/10.1017/S0952675716000129>.
- Ji, Zwei; Lee, Nayeon; Frieske, Rita; Yu, Tiezheng; Su, Dan; Xu, Yan; Ishii, Etsuko; Bang, Ye Jin; Madotto, Andrea & Fung, Pascale 2023. Survey of hallucination in natural language generation. *ACM Computing Surveys* 55,12. 248:1-248:38. <DOI: 10.1145/3571730>.
- Jurafsky, Dan & Martin, James H. 2008. *Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition*. 2nd edition. Russell, Stuart & Norvig, Peter (eds.). Upper Saddle River, NJ: Prentice Hall.
- Kalouli, Aikaterini-Lida 2021. *Hy-NLI: A hybrid system for state-of-the-art natural language inference*. University of Konstanz dissertation.
- Kalouli, Aikaterini-Lida; Crouch, Richard & de Paiva, Valeria 2020. Hy-NLI: A hybrid system for natural language inference. In *Proceedings of the 28th International Conference on Computational Linguistics*. Barcelona, Spain (Online): International Committee on Computational Linguistics. 5235-5249. <aclanthology.org/2020.coling-main.459>.
- Kaplan, Jared; McCandlish, Sam; Henighan, Tom; Brown, Tom B.; Chess, Benjamin; Child, Rewon; Gray, Scott; Radford, Alec; Wu, Jeffrey & Amodei, Dario 2020. *Scaling Laws for Neural Language Models*. <doi.org/10.48550/ARXIV.2001.08361>.
- Kaplan, Ronald M. 1987. Three seductions of computational linguistics. In Whitelock, P.; Wood, M. M.; Somers, H.; Johnson, R. & Bennett, P. (eds.), *Linguistic Theory and Computer Applications*. London: Academic Press. 149-188.
- Kaplan, Ronald M. 2019. Computational psycholinguistics. *Computational Linguistics* 45,4. 607-626. <doi:10.1162/coli_a_00359>. <aclanthology.org/J19-4001>.
- Kaplan, Ronald M.; King, Tracey H. & Maxwell, John T. III 2002. Adapting

- existing grammars: The XLE experience. In *COLING-02: Grammar Engineering and Evaluation*.
- Katz, Phillip 1986. PKZIP. Commercial Compression System, Version 1.1. <www.pkware.com/pkzip>.
- Katzir, Roni 2023. *Why large language models are poor theories of human linguistic cognition. A reply to Piantadosi (2023)* [LingBuzz]. <[lingBuzz/007190](https://lingBuzz.org/007190)>. *Biolinguistics* 17. <doi.org/10.5964/bioling.13153>.
- Kawahara, Shigeto; Noto, Atsushi & Kumagai, Gakuji 2018. Sound symbolic patterns in Pokémon names. *Phonetica* 75,3. 219-244. <DOI: 10.1159/000484938>.
- Kayne, Richard S. 1994. *The antisymmetry of syntax*. Cambridge, MA: MIT Press.
- Keine, Stefan 2020. *Probes and their horizons*. Cambridge, MA: MIT Press.
- Kempson, Ruth; Meyer Viol, Wilfried & Gabbay, Dov M. 2001. *Dynamic Syntax: The Flow of Language Understanding*. Wiley.
- Kennedy, Christopher 2015. A “de-Fregean” semantics (and neo-Gricean pragmatics) for modified and unmodified numerals. *Semantics & Pragmatics* 8. 1-44. <dx.doi.org/10.3765/sp.8.1>.
- Kerr, Dara 2024. How Memphis became a battleground over Elon Musk’s xAI supercomputer. *NPR* 11 September 2024. <www.npr.org/2024/09/11/6588134/elon-musk-ai-xai-supercomputer-memphis-pollution>.
- Kharitonov, Eugene & Chaabouni, Rahma 2021. What they do when in doubt: A study of inductive biases in seq2seq learners. In *ICLR 2021 Conference Track*. Online: OpenReview.
- Kim, Najoung; Patel, Roma; Poliak, Adam; Wang, Alex; Xia, Patrick; McCoy, R. Thomas; Tenney, Ian; Ross, Alexis; Linzen, Tal & van Durme, Benjamin 2019. Probing what different NLP tasks teach machines about function word comprehension. <[arXiv:1904.11544](https://arxiv.org/abs/1904.11544)>.
- Kingma, Diederik P. & Ba, Jimmy Lei 2015. Adam: A method for stochastic optimization. In *ICLR 2015 Conference Track*. San Diego, CA: OpenReview.
- Kirov, Christo & Cotterell, Ryan 2018. Recurrent Neural Networks in Linguistic Theory: Revisiting Pinker and Prince (1988) and the Past Tense Debate. *Transactions of the Association for Computational Linguistics* 6 (December). 651-665. <doi.org/10.1162/tacl_a_00247>.
- Kitaev, Nikita; Cao, Steven & Klein, Daniel 2019. Multilingual constituency parsing with self-attention and pre-training. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (ACL 2019). 3499-3505.
- Kitchin, Rob 2014. Big Data, new epistemologies and paradigm shifts. *Big Data & Society* 1,1. <DOI: 10.1177/2053951714528481>.
- Klein, Daniel & Manning, Christopher D. 2003. Accurate unlexicalized parsing. In *Proceedings of the 41st Meeting of the Association for Computational Linguistics*. 423-430.
- Kleyko, Denis; Rachkovskij, Dmitri; Osipov, Evgeny & Rahimi, Abbas

2023. A survey on hyperdimensional computing aka vector symbolic architectures, parts 1 and 2. *ACM Computing Surveys* 55. 130. <doi.org/10.1145/3538531>.
- Klimova, Blanka; Pikhart, Marcel & Al-Obaydi, Liqaa Habeb 2024. Exploring the potential of ChatGPT for foreign language education at the university level. *Frontiers in Psychology* 15. <DOI: 10.3389/fpsyg.2024.1269319>.
- Knight, Chris 2016. *Decoding Chomsky: Science and Revolutionary Politics*. New Haven, CT: Yale University Press. <DOI: 10.12987/9780300222159>.
- Kobele, Gregory M. 2023. Minimalist Grammars and Decomposition. In Kleanthes, Grohmann & Leivada, Evelina (eds.), *The Cambridge Handbook of Minimalism*. Cambridge University Press.
- Kobele, Gregory M.; Gerth, Sabrina & Hale, John T. 2013. Memory resource allocation in top-down Minimalist parsing. In Morrill, Glyn & Nederhof, Mark-Jan (eds.), *Formal grammar: 17th and 18th international conferences, FG 2012, Opole, Poland, August 2012, Revised selected papers, FG 2013, Düsseldorf, Germany, August 2013*. 32-51. Berlin / Heidelberg: Springer. <doi.org/10.1007/978-3-642-39998-5_3>.
- Kodner, Jordan; Payne, Sarah & Heinz, Jeffrey 2023. Why linguistics will thrive in the 21st century: A reply to Piantadosi (2023). <arxiv.org/abs/2308.03228>.
- Koerner, Konrad 1983. The Chomskyan 'revolution' and its historiography: A few critical remarks. *Language & Communication* 3,2. 147-169. <DOI: 10.1016/0271-5309(83)90012-5>.
- Kojima, Takeshi; Gu, Shixiang (Shane); Reid, Machel; Matsuo, Yutaka & Iwasawa, Yusuke 2022. Large language models are zero-shot reasoners. In Koyejo, S.; Mohamed, S.; Agarwal, Al; Belgrave, D.; Cho, K. & Oh, A. (eds.), *Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track*. New Orleans, LA: Curran Associates, Inc. 22199-22213.
- Kolmogorov, Andrey N. 1963. On Tables of Random Numbers. *Sankhyā: The Indian Journal of Statistics, Series A (1961-2002)* 25,4. 369-376.
- Kuhn, Thomas 1962. *The Structure of Scientific Revolutions*. Chicago, IL: University of Chicago Press.
- Kwon, Diana 2024. AI is complicating plagiarism. How should scientists respond? *Nature*. <DOI: 10.1038/d41586-024-02371-z>.
- Lake, Brenden M. & Baroni, Marco 2023. Human-like systematic generalization through a meta-learning neural network. *Nature* 623. 115-121. <doi.org/10.1038/s41586-023-06668-3>.
- Lakretz, Yair; Hupkes, Dieuwke; Vergallito, Alessandra; Marelli, Marco; Baroni, Marco & Dehaene, Stanislas 2021. Mechanisms for handling nested dependencies in neural-network language models and humans. *Cognition* 213. 1-24. <DOI: 10.1016/j.cognition.2021.104699>. <www.sciencedirect.com/science/article/pii/S0010027721001189>.

- Lakretz, Yair; Kruszewski, German; Desbordes, Theo; Hupkes, Dieuwke; Dehaene, Stanislas & Baroni, Marco 2019. The emergence of number and syntax units in LSTM language models. In Burstein, Jill; Doran, Christy & Solorio, Thamar (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Vol. 1*. Minneapolis, MN: Association for Computational Linguistics. 11-20. <DOI: 10.18653/v1/N19-1002>.
- Lan, Nur; Chemla, Emmanuel & Katzir, Roni 2024. Large language models and the argument from the poverty of the stimulus. *Linguistic Inquiry*. 1-28. <doi.org/10.1162/ling_a_00533>.
- Lan, Nur; Geyer, Michal; Chemla, Emmanuel & Katzir, Roni 2022. Minimum Description Length Recurrent Neural Networks. *Transactions of the Association for Computational Linguistics* 10 (July). 785-99. <doi.org/10.1162/tacl_a_00489>.
- Landman, Fred 2003. Predicate-argument mismatches and the adjectival theory of indefinites. In Coene, M. & d'Hulst, Y. (eds.), *From NP to DP: The syntax and semantics of noun phrases*. Volume 1. 211-237. Amsterdam: John Benjamins.
- Lasnik, Howard & Lidz, Jeffrey L. 2016. The argument from the poverty of the stimulus. In Roberts, Ian (ed.), *The Oxford Handbook of Universal Grammar*. Oxford: Oxford University Press. 221-248.
- Latour, Bruno 1984. *Les Microbes: Guerre et paix, suivi de Irréductions*. Paris, France: A. M. Métailié.
- Law, John & Lodge, Peter 1984. *Science for Social Scientists*. London: Palgrave Macmillan UK. <DOI: 10.1007/978-1-349-17536-9>.
- Lawson, Alex 2024. Google to buy nuclear power for AI datacentres in 'world first' deal. *Guardian* 15 October 2024. <www.theguardian.com/technology/2024/oct/15/google-buy-nuclear-power-ai-datacentres-kairos-power>.
- Lee, So Young & De Santo, Aniello. A computational view into the structure of attachment ambiguities in Chinese and Korean. In *Proceedings of the north east linguistics society*. 189-198.
- Levesque, Hector J. 2014. On our best behaviour. *Artificial Intelligence* 212. 27-35. <doi.org/10.1016/j.artint.2014.03.007>.
- Levshina, Natalia 2023. *Communicative efficiency: Language structure and use*. Cambridge: Cambridge University Press.
- Levy, Roger 2008. Expectation-based syntactic comprehension. *Cognition* 106,3. 1126-1177.
- Li, Jixing; Bhattacharji, Shohini; Zhang, Shulin; Franzluebbers, Berta; Luh, Wen-Ming; Spreng, R. Nathan; Brennan, Jonathan R.; Yang, Yiming; Pallier, Christophe & Hale, John 2022. *Le Petit Prince* multilingual naturalistic fMRI corpus. *Scientific Data* 9. 530. <doi.org/10.1038/s41597-022-01625-7>.
- Li, Jixing & Hale, John 2019. Grammatical predictors for fMRI time-courses.

- In Berwick, Robert C. & Stabler, Edward P. (eds.), *Minimalist Parsing*. Oxford, UK: Oxford University Press. 159-173. <doi.org/10.1093/oso/9780198795087.003.0007>.
- Li, Ming & Vitányi, Paul 2008. *An Introduction to Kolmogorov Complexity and Its Applications*. New York: Springer. <doi.org/10.1007/978-0-387-49820-1>.
- Lidz, Jeffrey & Gleitman, Lila R. 2004. Argument structure and the child's contribution to language learning. *Trends in Cognitive Sciences* 8,4.
- Lillicrap, Timothy P.; Santoro, Adam; Marris, Luke; Akerman, Colin J. & Hinton, Geoffrey 2020. Backpropagation and the Brain. *Nature Reviews Neuroscience* 21,6. 335-46. <doi.org/10.1038/s41583-020-0277-3>.
- Lin, Stephanie; Hilton, Jacob & Evans, Owain 2022. TruthfulQA: Measuring how models mimic human falsehoods. In Muresan, Smaranda; Nakov, Preslav & Villavicencio, Aline (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. Dublin, Ireland: Association for Computational Linguistics. 3214-3252. <DOI: 10.18653/v1/2022.acl-long.229>.
- Ling, Jacqueline 2001. Power of a human brain. In *Physics Factbook*. <hypertextbook.com/facts/2001/JacquelineLing.shtml>.
- Link, Godehard 1983. The logical analysis of plurals and mass terms: A lattice-theoretical approach. In Bauerle, Rainer; Schwarze, Christoph & von Stechow, Arnim (eds.), *Meaning, Use, and the Interpretation of Language*. Berlin / New York: de Gruyter. 302-323.
- Linzen, Tal & Baroni, Marco 2021. Syntactic structure from deep learning. *Annual Review of Linguistics* 7. 195-212. <DOI: 10.1146/annurev-linguistics-032020-051035>.
- Linzen, Tal; Dupoux, Emmanuel & Goldberg, Yoav 2016. Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies. *Transactions of the Association for Computational Linguistics* 4. 521-535. <doi.org/10.1162/tacl_a_00115>.
- Liu, Lei 2023. Processing advantages of end-weight. *Proceedings of the Society for Computation in Linguistics* 6. 250-258.
- Lohninger, Magdalena & Wurmbrand, Susi 2025. Typology of Complement Clauses. In Benz, Anton; Frey, Werner; Gärtner, Hans-Martin; Krifka, Manfred; Schenner, Mathias & Źygis, Marzena (eds.), *Handbook of clausal embedding*. Berlin: Language Science Press.
- Longobardi, Giuseppe 1994. Reference and proper names: A theory of N-movement in syntax and logical form. *Linguistic Inquiry* 25. 609-665.
- Manning, Christopher D.; Clark, Kevin; Hewitt, John; Khandelwal, Uravashi & Levy, Omer 2020. Emergent linguistic structure in artificial neural networks trained by self-supervision. In Gavish, Matan (ed.), *Proceedings of the National Academy of Science of the United States of America* 117. 30046-30054. <DOI: 10.1073/pnas.1907367117>.
- Manzini, Maria Rita 1983. Syntactic conditions on phonological rules. *MIT Working Papers in Linguistics* 5. 1-9.

- Marantz, Alec 2019. What do linguists do? In *The Julius Silver, Roslyn S. Silver, and Enid Silver Winslow Dialogues in Arts and Science, New York University*. <as.nyu.edu/content/dam/nyu-as/as/documents/silverdialogues/SilverDialogues_Marantz.pdf>.
- Marcus, Gary 2022. Noam Chomsky and GPT-3 [Blog post]. *Marcus on AI*. <garymarcus.substack.com/p/noam-chomsky-and-gpt-3>. Last accessed 24/02/2025.
- Marcus, Mitchell *et al.* 1994. The Penn Treebank: Annotating predicate argument structure. In *Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey*.
- Marr, David 1982. *Vision: A computational investigation into the human representation and processing of visual information*. San Francisco, CA: Freeman.
- Marr, David & Poggio, Tomaso 1976. *From Understanding Computation to Understanding Neural Circuitry*. Cambridge, MA: MIT Press.
- Martinetz, Julius; Linse, Christoph & Martinetz, Thomas 2024. Rethinking generalization of classifiers in separable classes scenarios and over-parameterized regimes. *International Joint Conference on Neural Networks 2024*. 1-10. <doi.org/10.1109/IJCNN60899.2024.10650680>.
- Marvin, Rebecca & Linzen, Tal 2018. Targeted Syntactic Evaluation of Language Models. *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*. 1192-1202. <doi.org/10.18653/v1/D18-1151>.
- May, Robert 1985. *Logical form: Its structure and derivation* (Vol. 12). Cambridge, MA: MIT Press.
- Mayer, Connor & Major, Travis 2018. A challenge for tier-based strict locality from Uyghur backness harmony. In Foret, Annie; Kobelev, Greg & Pogodalla, Sylvain (eds.), *Proceedings of formal grammar 2018*. Berlin: Springer. 62-83.
- McCawley, James D. 1976. Introduction. In McCawley, James D. (ed.), *Notes From the Linguistic Underground*. New York, NY: Academic Press. 1-19.
- McClelland, James L. & Rumelhart, David E. 1991. *Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises*. 2nd print. Computational Models of Cognition and Perception. Cambridge, MA: MIT Press.
- McCoy, Richard; Frank, Robert & Linzen, Tal 2018. Revisiting the poverty of the stimulus: Hierarchical generalization without a hierarchical bias in recurrent neural networks. In *Proceedings of the Annual Meeting of the Cognitive Science Society*. Madison, WI: Cognitive Science Society. 2096-2101.
- McCoy, R. Thomas; Yao, Shunyu; Friedman, Dan; Hardy, Matthew & Griffiths, Thomas L. 2023. Embers of autoregression: Understanding large language models through the problem they are trained to solve. <arxiv.org/abs/2309.13638>.
- McCullough, Gretchen 2019. *Because Internet: Understanding the New Rules of Language*. New York, NY: Riverhead Books.

- McGee, Thomas & Blank, Idan 2024. Evidence against syntactic encapsulation in large language models. *Procs. Cognitive Science Society* 46.
- McKenzie, Ian R.; Lyzhov, Alexander; Pieler, Michael Martin; Parrish, Alicia; Mueller, Aaron; Prabhu, Ameya; McLean, Euan; Shen, Xudong; Cavanagh, Joe, Gritsevskiy, Andrew George *et al.* 2023. Inverse scaling: When bigger isn't better. *Transactions on Machine Learning Research*.
- McNally, Louise & Boleda, Gemma 2004. Relational adjectives as properties of kinds. *Empirical Issues in Syntax and Semantics* 5. 179-196. <doi.org/ISSN1769-7158>.
- Merrill, William; Sabharwal, Ashish & Smith, Noah A. 2022. Saturated transformers are constant-depth threshold circuits. *Transactions of the Association for Computational Linguistics* 10. 843-856. <DOI: 10.1162/tacl_a_00493>.
- Michaelis, Jens 2001. Derivational Minimalism Is Mildly Context-Sensitive. In Moortgat, Michael (ed.), *Logical Aspects of Computational Linguistics* (Vol. 2014). Berlin / Heidelberg: Springer. 179-198. <doi.org/10.1007/3-540-45738-0_11>.
- Mikolov, Tomáš 2012. *Statistical Language Models Based on Neural Networks*. PhD dissertation. Brno University of Technology, Brno, Czech Republic.
- Milewski, Bartosz 2020. *Category Theory for Programmers*. <bartoszmilewski.com>.
- Miller, George A. & Chomsky, Noam 1963. Finitary Models of Language Users. In Luce, D. (ed.), *Handbook of Mathematical Psychology*. John Wiley & Sons. 2-419.
- Milway, Daniel 2023. A response to Piantadosi (2023). <lingbuzz/007264>.
- Mishra, Swaroop; Khashabi, Daniel; Baral, Chitta & Hajishirzi, Hannaneh 2022. Cross-task generalization via natural language crowdsourcing instructions. In Muresan, Smaranda; Nakov, Preslav & Villavicencio, Aline (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. Dublin, Ireland: Association for Computational Linguistics. 3470-3487. <DOI: 10.18653/v1/2022.acl-long.244>.
- Mitchell, J.; Kazanina, Nina; Houghton, Conor J.; Bowers, Jeffrey S. 2019. Do LSTMs know about Principle C? In *2019 Conference on Cognitive Computational Neuroscience*.
- Mollica, Frank & Piantadosi, Stephen 2019. Humans store about 1.5 megabytes of information during language acquisition. *Royal Society Open Science* 6,3.
- Mollica, Frank & Piantadosi, Stephen 2022. Meaning without reference in large language models. <arXiv:2208.02957>.
- Momma, Shota & Phillips, Colin 2018. The Relationship Between Parsing and Generation. *Annual Review of Linguistics* 4,1. 233-254. <doi.org/10.1146/annurev-linguistics-011817-045719>.
- Moro, Andrea 2023. Embodied syntax: Impossible languages and the irreducible difference between humans and machines. *Sistemi intelligenti* 2.

- 321-328. <doi.org/10.1422/108132>.
- Moro, Andrea; Greco, Matteo & Cappa, Stefano F. 2023. Large languages, impossible languages and human brains. *Cortex* 167. 82-85. <doi.org/10.1016/j.cortex.2023.07.003>.
- Müller, Stefan 2024. Large language models: The best linguistic theory, a wrong linguistic theory, or no linguistic theory at all. *Zeitschrift für Sprachwissenschaft*.
- Mullins, Nicholas C. 1975. A sociological theory of scientific revolution. In Knorr, Karin D.; Strasser, Hermann & Zilian, Hans Georg (eds.), *Determinants and Controls of Scientific Development*. Dordrecht, Netherlands: Springer Netherlands. 185-203.
- Murray, Stephen O. 1994. *Theory Groups and the Study of Language in North America*. Amsterdam, Netherlands: John Benjamins.
- Murty, Shikhar; Sharma, Pratyusha; Andreas, Jacob & Manning, Christopher D. 2022. Characterizing intrinsic compositionality in transformers with tree projections.
- Naveed, Humza; Asad Ullah Khan; Shi Qiu; Saqib, Muhammad; Anwar, Saeed; Usman, Muhammad; Akhtar, Naveed; Barnes, Nick & Mian, Ajmal 2024. A comprehensive overview of large language models. <arxiv.org/abs/2307.06435>.
- Newmeyer, Frederick J. 1980. *Linguistic theory in America: The first quarter century of Transformational Generative Grammar*. New York: Academic Press.
- Newmeyer, Frederick J. 1986. Has there been a 'Chomskyan revolution' in linguistics? *Language* 62,1. 1-18. <DOI: 10.2307/415597>.
- Newmeyer, Frederick J. 2004. Against a parameter-setting approach to typological variation. *Linguistic Variation Yearbook* 4,1. 181-234. <[doi:10.1075/livy.4.06new](https://doi.org/10.1075/livy.4.06new)>.
- Newmeyer, Frederick J. 2021. Complexity and relative complexity in generative grammar. *Frontiers in Communication* 6. <[doi:10.3389/fcomm.2021.614352](https://doi.org/10.3389/fcomm.2021.614352)>.
- Newmeyer, Frederick J. & Emonds, Joseph 1971. The linguist in American society. In *Papers from the Seventh Regional Meeting of the Chicago Linguistic Society*. Chicago, IL: Chicago Linguistic Society. 285-303.
- Nivre, Joakim; Agić, Željko; Ahrenberg, Lars; Antonsen, Lene; Aranzabe, María Jesus; Asahara, Masayuki; Ateyah, Luma; Attia, M.; Atutxa, A.; Augustinus, L. et al. 2017. *Universal Dependencies 2.1*.
- Norvig, Peter 2017. On Chomsky and the two cultures of statistical learning. In Pietsch, Wolfgang; Wernecke, Jörg & Ott, Maximilian (eds.), *Berechenbarkeit der Welt? Philosophie und Wissenschaft im Zeitalter von Big Data*. Wiesbaden, Germany: Springer Fachmedien. 61-83.
- Nosengo, Nicola 2014. *I robot ci guardano: Aerei senza pilota, chirurghi a distanza e automi solidali*. Bologna: Zanichelli.
- Noy, Shakked & Zhang, Whitney 2023. Experimental evidence on the productivity effects of generative artificial intelligence. *Science* 381, 6654. 187-192. <DOI: 10.1126/science.adh2586>.
- Nvidia n.d. *meta/llama-3.1-405b-instruct*. *Nvidia API reference*. <docs.api.nvidia.com/nim/reference/meta-llama-3_1-405b>.

- Nye, Maxwell; Andreassen, Anders Johan; Gur-Ari, Guy; Michalewski, Henryk; Austin, Jacob; Bieber, David; Dohan, David; Lewkowycz, Aitor; Bosma, Maarten; Luan, David; Sutton, Charles & Odena, Augustus (2022). Show your work: Scratchpads for intermediate computation with language models. In *ICLR 2022 Workshop DL4C*. Online: OpenReview.
- Oepen, Stephan; Toutanova, Kristina; Shieber, Stuart; Manning, Christopher; Flickinger, Dan & Brants, Thorsten 2022. The LinGO Redwoods treebank: Motivation and preliminary applications. In *COLING 2002: The 17th International Conference on Computational Linguistics: Project Notes*. Taipei, Taiwan: Association for Computational Linguistics.
- Oerter, Robert 2006. *The theory of almost everything: The Standard Model, the unsung triumph of modern physics*. New York: Pi Press.
- Oh, Byung-Doh & Schuler, William 2023. Why does surprisal from larger transformer-based language models provide a poorer fit to human reading times? *Transactions of the Association for Computational Linguistics* 11. 336-350. <DOI: 10.1162/tacl_a_00548>.
- OpenAI 2023. *GPT-4 Technical Report* <arxiv.org/abs/2303.08774>.
- Ouyang, Long; Wu, Jeff; Jiang, Xu; Almeida, Diogo; Wainwright, Carroll L.; Mishkin, Pamela; Zhang, Chong; Agarwal, Sandhini; Slama, Katarina; Ray, Alex *et al.* 2022. Training language models to follow instructions with human feedback. <[arXiv:2203.02155](https://arxiv.org/abs/2203.02155)>.
- Ozaki, Satoru; Santo, Aniello De; Linzen, Tal & Dillon, Brian 2024. CCG parsing effort and surprisal jointly predict RT but underpredict garden-path effects. *Society for Computation in Linguistics* 7. 362-364. <doi.org/10.7275/scil.2229>.
- Papineni, Kishore; Roukos, Salim; Ward, Todd & Zhu, Wei-Jing 2001. BLEU: A Method for Automatic Evaluation of Machine Translation. In *Proceedings of the 40th Annual Meeting on Association for Computational Linguistics - ACL '02*, 311. Philadelphia, Pennsylvania: Association for Computational Linguistics. <doi.org/10.3115/1073083.1073135>.
- Park, Peter S.; Goldstein, Simon; O’Gara, Aidan; Chen, Michael & Hendrycks, Dan 2024. AI deception: A survey of examples, risks, and potential solutions. *Patterns* 5, 5. 100988. <DOI: 10.1016/j.pattern.2024.100988>.
- Pascanu, Razvan; Mikolov, Tomas & Bengio, Yoshua 2013. On the difficulty of training recurrent neural networks. In Dasgupta, Sanjoy & McAllester, David (eds.), *ICML’13: Proceedings of the 30th International Conference on International Conference on Machine Learning*. Vol. 28. Atlanta, GA: Proceedings of Machine Learning Research. 1310-1318.
- Pasternak, Robert & Graf, Thomas 2021. Cyclic scope and processing difficulty in a Minimalist parser. *Glossa* 6. 1-34. <doi.org/10.5334/gjgl.1209>.
- Pasteur, Louis 1876. *Études sur la bière, ses maladies, causes qui les provoquent, procédé pour la rendre inaltérable, avec une théorie nouvelle de la fermentation*. Paris: Gauthier-Villars.

- Pasteur, Louis 1880. De l'extension de la théorie des germes à l'étiologie de quelques maladies communes. In *Comptes rendus hebdomadaires des séances de l'Académie des sciences*. Vol. 90. Paris: Gauthier-Villars. 1033-1034.
- Pasteur, Louis; Joubert, Jules & Chamberland, Charles 1878. La théorie des germes et ses applications à la médecine et à la chirurgie. In *Comptes rendus hebdomadaires des séances de l'Académie des sciences*. Vol. 86. Paris: Gauthier-Villars. 1037-1043.
- Pater, Joe 2019. Generative linguistics and neural networks at 60: Foundation, friction, and fusion. *Language* 95. 41-74. <doi.org/10.1353/lan.2019.0009>.
- Pearl, Lisa 2022. Poverty of the stimulus without tears. *Language Learning and Development* 18,4. 415-454. <DOI: 10.1080/15475441.2021.1981908>.
- Pennington, Jeffrey; Socher, Richard & Manning, Christopher D. 2014. Glove: Global vectors for word representation. *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*. 1532-1543.
- Pereira, Fernando 2000. Formal grammar and information theory: Together again? *Philosophical Transactions: Mathematical, Physical and Engineering Sciences* 358,1769. 1239-1253.
- Perez, Ethan; Huang, Saffron; Song, Francis; Cai, Trevor; Ring, Roman; Aslanides, John; Glaese, Amelia; McAleese, Nat & Irving, Geoffrey 2022. Red teaming language models with language models. In Goldberg, Yoav; Kozareva, Zornitsa & Zhang, Yue (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics. 3419-3448. <DOI: 10.18653/v1/2022.emnlp-main.225>.
- Pesetsky, David 2024. Is there an LLM challenge for Linguistics? Or is there a Linguistics challenge for LLMs?. Paper presented at the Academia Română, Bucarest, 22 May 2024.
- Petroni, Fabio; Rocktäschel, Tim; Riedel, Sebastian; Lewis, Patrick; Bakhtin, Anton; Wu, Yuxiang & Miller, Alexander 2019. Language models as knowledge bases? In Inui, Kentaro; Jiang, Jing; Ng, Vincent & Wan, Xiaojun (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*. Hong Kong, China: Association for Computational Linguistics. 2463-2473. <DOI: 10.18653/v1/D19-1250>.
- Phillips, Colin 1996. *Order and structure*. PhD dissertation. Cambridge, MA: MIT Press.
- Phillips, Colin 2003. Linear order and constituency. *Linguistic Inquiry* 34. 37-90.
- Piantadosi, Steven T. 2023. Modern language models refute Chomsky's approach to language. <lingbuzz.net/lingbuzz/007180>.
- Piantadosi, Steven T. 2024. Modern language models refute Chomsky's approach to language. In Gibson, Edward & Poliak, Moshe (eds.), *From*

- fieldwork to linguistic theory: A tribute to Dan Everett. Berlin: Language Science Press. 353-414.
- Pinker, Steven 1984. *Language Learnability and Language Development*. Cambridge, MA: Harvard University Press.
- Plate, Tony A. 1994. *Holographic Reduced Representation*. Stanford: CSLI.
- Plato 380 BCE. *Meno*.
- Poggio, Thomas; Rifkin, Ryan; Niyogi, Partha & Mukherjee, Sayan 2004. General conditions for predictivity in learning theory. *Nature* 428. 419-422. <doi.org/10.1038/nature02341>.
- Pollard, Carl & Sag, Ivan A. 1994. *Head-Driven Phrase Structure Grammar*. Chicago, IL: University of Chicago Press.
- Pollock, Jean Yves 1989. Verb movement, universal grammar, and the structure of IP. *Linguistic Inquiry* 20.3. 365-424.
- Popper, Karl 1934. *Logik der Forschung*. Berlin: Springer. <doi.org/10.1007/978-3-7091-4177-9>.
- Prasanna, Sai; Rogers, Anna & Rumshisky, Anna 2020. When BERT plays the lottery, all tickets are winning. In Webber, Bonnie; Cohn, Trevor; He, Yulan & Liu, Yang (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Online: Association for Computational Linguistics. 3208-3229. <DOI: 10.18653/v1/2020.emnlp-main.259>.
- Pullum, Geoffrey K. & Scholz, Barbara C. 2002. Empirical assessment of stimulus poverty arguments. *The Linguistic Review* 18.1-2. 9. <DOI: 10.1515/tlir.19.1-2.9>.
- Purnell, Thomas; Idsardi, William & Baugh, John 1999. Perceptual and phonetic experiments on American English dialect identification. *Journal of Language and Social Psychology* 18.1. 10-30. <DOI: 10.1177/0261927X99018001002>.
- Quine, Willard Van Orman 1960. *Word and Object*. Cambridge, MA: MIT Press. <doi.org/10.7551/mitpress/9636.001.0001>.
- Quinlan, Philip T. (ed.) 2004. *Connectionist Models of Development* (0 ed.). Psychology Press. <doi.org/10.4324/9780203494028>.
- Radford, Alec; Narasimhan, Karthik; Salimans, Tim; Sutskever, Ilya *et al.* 2018. *Improving language understanding by generative pre-training*.
- Radford, Alec; Wu, Jeffrey; Amodei, Dario; Clark, Jack; Brundage, Miles & Sutskever, Ilya 2019a. Better language models and their implications [Blog post]. *OpenAI Research*. <openai.com/index/better-language-models>. Last accessed 24/02/2025.
- Radford, Alec; Wu, Jeffrey; Child, Rewon; Luan, David; Amodei, Dario & Sutskever, Ilya 2019b. *Language Models Are Unsupervised Multitask Learners*. Technical report. San Francisco, CA: OpenAI.
- Radford, Andrew 1997. *Syntax: A Minimalist Introduction*. Cambridge: Cambridge University Press.
- Radford, Andrew 2016. *Analysing English Sentences, Second Edition*. Cambridge: Cambridge University Press.

- Rafailov, Rafael; Sharma, Archit; Mitchell, Eric; Ermon, Stefano; Manning, Christopher D. & Finn, Chelsea 2023. Direct preference optimization: Your language model is secretly a reward model. In *ICLR 2023 Conference Track*. Kigali, Rwanda: OpenReview.
- Raman, Raghu *et al.* 2024. Fake news research trends, linkages to generative artificial intelligence and sustainable development goals. *Helion* e24727. <DOI: 10.1016/j.heliyon.2024.e24727>.
- Rasin, Ezer; Berger, Iddo; Lan, Nur; Shefi, Itamar & Katzir, Roni 2021. Approaching explanatory adequacy in phonology using minimum description length. *Journal of Language Modelling* 9,1. 17-66. <doi.org/10.15398/jlm.v9i1.266>.
- Rawski, Jonathan & Heinz, Jeffrey 2019. No free lunch in linguistics or machine learning: Response to Pater. *Language* 95. 125-135.
- Raymond, Louise & O'Reilly, Tim 1999. *The Cathedral and the Bazaar* (1st ed.). USA: O'Reilly & Associates, Inc.
- Reinhart, Tanya 1976. *The syntactic domain of anaphora*. Cambridge, MA: MIT Press.
- Retoré, Christian (ed.), *Logical Aspects of Computational Linguistics: Lecture Notes in Computer Science*. Berlin: Springer. 68-95.
- Rickford, John R. & King, Sharese 2016. Language and linguistics on trial: Hearing Rachel Jeantel (and other vernacular speakers) in the courtroom and beyond. *Language* 92,4. 948-988.
- Riesenhuber, Maximilian & Poggio, Tomaso 1999. Hierarchical models of object recognition in cortex. *Nature Neuroscience* 2,11. 1019-1025. <doi.org/10.1038/14819>.
- Riezler, Stefan; Holloway King, Tracy; Kaplan, Ronald M.; Crouch, Richard; Maxwell, John T. III & Johnson, Mark 2002. Parsing the Wall Street Journal using a Lexical-Functional Grammar and discriminative estimation techniques. In *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*. Philadelphia: Association for Computational Linguistics. 271-278.
- Rissanen, Jorma 1978. Modeling by shortest data description. *Automatica* 14,5. 465-471. <doi.org/10.1016/0005-1098(78)90005-5>.
- Rissanen, Jorma 1987. Stochastic Complexity. *Journal of the Royal Statistical Society: Series B (Methodological)* 49,3. 223-239. <doi.org/10.1111/j.2517-6161.1987.tb01694.x>.
- Ritter, Elizabeth & Wiltschko, Martina 2014. The composition of INFL. An exploration of tense, tenseless languages and tenseless constructions. *Natural Language and Linguistic Theory* 32. 1331-1386.
- Ritter, Elizabeth 1991. Two functional categories in Noun Phrases: Evidence from Modern Hebrew. *Syntax and Semantics* 25.
- Rizzi, Luigi 1990. *Relativized minimality*. Cambridge, MA: MIT Press.
- Rizzi, Luigi 1997. The Fine Structure of the Left Periphery. In Haegeman, Liliane (ed.), *Elements of Grammar*. Dordrecht: Springer Netherlands. 281-337. <doi.org/10.1007/978-94-011-5420-8_7>.

- Rizzi, Luigi (ed.) 2004. *The structure of CP and IP*. Oxford, UK: Oxford University Press.
- Rizzi, Luigi 2013. Locality. *Lingua* 130. 169-186.
- Rizzi, Luigi 2016. Labeling, maximality and the head-phrase distinction. *The Linguistic Review* 33.1. 103-127.
- Rizzi, Luigi 2021. *Complexité des structures linguistiques, simplicité des mécanismes du langage*, Leçon inaugurale, 2021, Collège de France – Fayard, Paris. English translation: *Complexity of Linguistic Structures, Simplicity of Language Mechanisms* (2024). OpenEdition Books, Collège de France. <DOI: 10.4000/books.cdf.16006>.
- Rizzi, Luigi & Cinque, Guglielmo 2016. Functional Categories and Syntactic Theory. *Annual Review of Linguistics* 2.1. 139-163. <doi.org/10.1146/annurev-linguistics-011415-040827>.
- Rizzi, Luigi & Savoia, Leonardo 1993. Conditions on /u/ propagation in Southern Italian Dialects: A Locality Parameter for Phonosyntactic Processes. In Belletti, A. (ed.), *Syntactic Theory and the Dialects of Italy*. Turin: Rosenberg & Sellier.
- Roberts, Ian 2017. The final-over-final condition in DP: Universal 20 and the nature of demonstratives. In Sheehan, Michelle; Biberauer, Theresa; Roberts, Ian & Holmberg, Anders (eds.), *The Final-over-Final Condition: A Syntactic Universal* (Vol. 76). Cambridge, MA: MIT Press. 151.
- Roberts, Ian 2019. *Parameter Hierarchies and Universal Grammar* (1st ed.). Oxford, UK: Oxford University Press. <doi.org/10.1093/oso/9780198804635.001.0001>.
- Rogers, Anna; Kovaleva, Olga & Rumshisky, Anna 2021. A primer in BERTology: What we know about how BERT works. *Transactions of the Association for Computational Linguistics* 8. 842-866.
- Ross, John Robert 1967. *Constraints on variables in syntax*. Cambridge, MA: MIT Press.
- Rumelhart, David E.; Hinton, Geoffrey E. & Williams, Ronald J. 1986. Learning representations by back-propagating errors. *Nature* 323,6088. 533-536. <DOI: 10.1038/323533a0>.
- Rumelhart, David E. & McClelland, James L. 1986. On Learning the Past Tenses of English Verbs. In *Parallel Distributed Processing*. Cambridge, MA: MIT Press. <doi.org/10.7551/mitpress/5237.003.0008>.
- Rumelhart, David E.; McClelland, James L. & PDP Research Group (eds.) 1999. *Parallel distributed processing. 1: Foundations*. 12th print. Cambridge, MA: MIT Press. <doi.org/10.7551/mitpress/5236.001.0001>.
- Russell, Bertrand 1947. *Human Knowledge: Its Scope and Limits*. New York, NY: Simon and Schuster.
- Sampson, Geoffrey 1997. *Educating Eve: The ‘language instinct’ debate*. London / Washington, DC: Cassell.
- Sanh, Victor; Webson, Albert; Raffel, Colin; Bach, Stephen; Sutawika, Lintang; Alyafeai, Zaid; Chaffin, Antoine; Stiegler, Arnaud; Raja, Arun;

- Dey, Manan *et al.* 2022. *Multitask prompted training enables zero-shot task generalization*. In *ICLR 2022 Conference Track*. Online: OpenReview.
- Sarlin, Paul-Edouard; DeTone, Daniel; Malisiewicz, Tomasz & Rabinovich, Andrew 2020. Superglue: Learning feature matching with graph neural networks. <arxiv.org/abs/1911.11763>.
- Sartran, Laurent; Barrett, Samuel; Kuncoro, Adhiguna; Stanojević, Miloš; Blunsom, Phil & Dyer, Chris 2022. Transformer Grammars: Augmenting Transformer Language Models with Syntactic Inductive Biases at Scale. *Transactions of the Association for Computational Linguistics* 10 (December). 1423-39. <doi.org/10.1162/tacl_a_00526>.
- Sathish, Vishwas; Lin, Hannah; Kamath, Aditya K. & Nyayachavadi, Anish 2024. LLeMpower: Understanding disparities in the control and access of large language models. <[arXiv:2404.09356](https://arxiv.org/abs/2404.09356)>.
- Savitch, Walter J. 1993. Why it might pay to assume that languages are infinite. *Annals of Mathematics and Artificial Intelligence* 8. 17-25.
- Shannon, C. E. 1948. A mathematical theory of communication. *The Bell System Technical Journal* 27,3. 379-423. <DOI: [10.1002/j.1538-7305.1948.tb01338.x](https://doi.org/10.1002/j.1538-7305.1948.tb01338.x)>.
- Shieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. *Linguistics and Philosophy* 8,3. 333-43. <doi.org/10.1007/BF00630917>.
- Siegelman, Noam; Schroeder, Sascha; Acartürk, Cengiz; Ahn, Hee-Don; Alexeeva, Svetlana; Amenta, Simona; Bertram, Raymond; Bonandolini, R.; Brysbaert, M.; Chernova, D.; Da Fonseca, S. M.; Dirix, N.; Duyck, W.; Fella, A.; Frost, R.; Gattei, C. A.; Kalaitzi, A.; Kwon, N.; Lõo, K.; ... Kuperman, V. 2022. Expanding horizons of cross-linguistic research on reading: The Multilingual Eye-movement Corpus (MECO). *Behavior Research Methods* 54,6. 2843-2863. <doi.org/10.3758/s13428-021-01772-6>.
- Smith, Nathaniel J. & Levy, Roger 2013. The effect of word predictability on reading time is logarithmic. *Cognition* 128,3. 302-319. <DOI: [10.1016/j.cognition.2013.02.013](https://doi.org/10.1016/j.cognition.2013.02.013)>.
- Smolensky, Paul 1990. Tensor product variable binding and the representation of symbolic structures in connectionist systems. *Artificial Intelligence* 46. 159-216. <[doi.org/10.1016/0004-3702\(90\)90007-m](https://doi.org/10.1016/0004-3702(90)90007-m)>.
- Solomonoff, Ray J. 1960. *A Preliminary Report on a General Theory of Inductive Inference*. United States Air Force, Office of Scientific Research. <books.google.it/books?id=SuTHtgAACAAJ>.
- Spitale, Giovanni; Biller-Andorno, Nikola & Germani, Federico 2023. AI model GPT-3 (dis)informs us better than humans. *Science Advances* 9, 26. <DOI: [10.1126/sciadv.adh1850](https://doi.org/10.1126/sciadv.adh1850)>.
- Sprouse, Jon & Almeida, Diogo 2017. Design sensitivity and statistical power in acceptability judgment experiments. *Glossa* 2,1. 1-32. <doi.org/10.5334/gjgl.236>.
- Sprouse, Jon & Hornstein, Norbert (eds.) 2013. *Experimental Syntax and*

- Island Effects* (1st ed.). Cambridge University Press. <doi.org/10.1017/CBO9781139035309>.
- Srivastava, Aarohi; Rastogi, Abhinav; Rao, Abhishek; Shoeb, Abu Awal Md; Abid, Abubakar; Fisch, Adam; Brown, Adam R.; Santoro, Adam; Gupta, Aditya; Garriga-Alonso, Adrià *et al.* 2023. *Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models*. *Transactions on Machine Learning Research*.
- Stabler, Edward 1991. Avoid the pedestrian's paradox. In Berwick, Robert C.; Abney, Steven P. & Tenny, Carol (eds.), *Principle-based Parsing: Computation and Psycholinguistics*. Dordrecht: Kluwer. 199-238. <doi.org/10.1007/978-94-011-3474-3_8>.
- Stabler, Edward 1997. Derivational minimalism. In Retoré, Christian (ed.), *Logical Aspects of Computational Linguistics*. Berlin / Heidelberg: Springer. 68-95.
- Stabler, Edward 2011. Computational Perspectives on Minimalism. In Boeckx, Cedric (ed.), *The Oxford Handbook of Linguistic Minimalism*. Oxford, UK: Oxford University Press. <doi.org/10.1093/oxfordhb/9780199549368.013.0027>.
- Stabler, Edward 2013. Two Models of Minimalist, Incremental Syntactic Analysis. *Topics in Cognitive Science* 5,3. 611-633. <doi.org/10.1111/tops.12031>.
- Starke, Michal 2001. *Move Dissolves into Merge: A Theory of Locality*. PhD dissertation. Université de Genève.
- Steedman, Mark & Baldridge, Jason 2006. Combinatory categorial grammar. In Brown, Keith (ed.), *Encyclopedia of Language & Linguistics*. 2nd edition. Oxford: Elsevier. 610-621.
- Steuer, Julius; Mosbach, Marius & Klakow, Dietrich 2023. Large GPT-like Models are Bad Babies: A Closer Look at the Relationship between Linguistic Competence and Psycholinguistic Measures. *Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning*. Singapore: Association for Computational Linguistics. 114-129. <doi.org/10.18653/v1/2023.conll-babylm.12>.
- Stowe, Laurie A.; Kaan, Edith; Sabourin, Laura & Taylor, Ryan C. 2018. The sentence wrap-up dogma. *Cognition* 176. 232-247. <doi.org/10.1016/j.cognition.2018.03.011>.
- Strubell, Emma; Ganesh, Ananya & McCallum, Andrew 2019. Energy and policy considerations for deep learning in NLP. In Korhonen, Anna; Traum, David & Màrquez, Lluís (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. Florence, Italy: Association for Computational Linguistics. 3645-3650. <DOI: 10.18653/v1/P19-1355>.
- Sulger, Sebastian; Butt, Miriam; Holloway King, Tracy; Meurer, Paul; Laczkó, Tibor; Rákosi, György; Bamba Dione, Cheikh M.; Dyvik, Helge; Rosén, Victoria; De Smedt, Koenraad; Patejuk, Agnieszka; Çetinoglu, Özlem; Arka, I Wayan & Mistica, Meladel 2013. ParGramBank: The

- ParGram parallel treebank. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics*, vol. 1. Sofia: Association for Computational Linguistics. 550-560. <www.aclweb.org/anthology/P13-1054.pdf>.
- Sutton, Rich 2019. The bitter lesson [Blog post]. *Incomplete Ideas*. <www.incompleteideas.net/IncIdeas/BitterLesson.html>. Last accessed 24/02/2025.
- Svenonius, Peter 2016. Significant mid-level results of generative linguistics. <blogg.uit.no/psv000/2016/08/30/significant-mid-level-results-of-generative-linguistics>.
- Swanson, Logan 2024. Syntactic learning over tree tiers. In *Proceedings of ESSLLI 2024*. 187-196.
- Taylor, Wilson L. 1953. “Cloze Procedure”: A New Tool for Measuring Readability. *Journalism Quarterly* 30,4. 415-433. <doi.org/10.1177/107769905303000401>.
- Torr, John 2017. Autobank: A semi-automatic annotation tool for developing deep Minimalist grammar treebanks. In *Proceedings of the demonstrations at the 15th conference of the European chapter of the Association for Computational Linguistics*. 81-86.
- Torr, John 2018. Constraining MGbank: Agreement, L-selection and supertagging in minimalist grammars. In Gurevych, Iryna & Miyao, Yusuke (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. Melbourne, Australia: Association for Computational Linguistics. 590-600. <DOI: 10.18653/v1/P18-1055>.
- Torres, Charles & Futrell, Richard 2023. Simpler neural networks prefer sub-regular languages. In *Findings of the association for computational linguistics: EMNLP 2023*. 1651-1661.
- Torres, Charles; Hanson, Kenneth; Graf, Thomas & Mayer, Connor 2023. Modeling island effects with probabilistic tier-based strictly local grammars over trees. In *Proceedings of the Society for Computation in Linguistics (SCI) 2023*. 155-164. <doi.org/10.7275/nz4q-6b09>.
- Tran, Tu-Anh & Miyao, Yusuke 2022. Development of a multilingual CCG treebank via Universal Dependencies conversion. In Calzolari, Nicoletta; Béchet, Frédéric; Blache, Philippe; Choukri, Khalid; Cieri, Christopher; Declerck, Thierry; Goggi, Sara; Isahara, Hitoshi; Maegaard, Bente; Mariani, Joseph et al. (eds.), *Proceedings of the Thirteenth Language Resources and Evaluation Conference*. Marseille, France: European Language Resources Association. 5220-5233.
- Trinh, Trieu H. & Le, Quoc V. 2019. A simple method for commonsense reasoning. <[arXiv:1806.02847](https://arxiv.org/abs/1806.02847)>.
- Trotta, Daniela; Guarasci, Raffaele; Leonardelli, Elisa & Tonelli, Sara 2021. Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus. *Findings of the Association for Computational Linguistics: EMNLP 2021*. Punta Cana, Dominican Republic: Association for Computational Linguistics. 2929-2940. <doi.org/10.18653/v1/2021-fnlp-027>.

- v1/2021.findings-emnlp.250>.
- Turing, Alan M. 1937. Computability and λ -definability. *Journal of Symbolic Logic* 2. 153-163. <doi.org/10.2307/2268280>.
- Turing, Alan 1950. Computing machinery and intelligence. *Mind* 59. 433-460. <DOI: 10.1093/mind/lix.236.433>.
- van Fraassen, Bas C. 1980. *The Scientific Image*. Oxford: Oxford University Press. 97-157.
- van Riemsdijk, Henk & Williams, Edwin 1986. *Introduction to the Theory of Grammar*. Cambridge, MA: MIT Press.
- van Rooij, Iris; Guest, Olivia; Adolfi, Federico; de Haan, Ronald; Kolokova, Antonina & Rich, Patricia 2024. Reclaiming AI as a theoretical tool for cognitive science. *Computational Brain and Behaviour*.
- Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.; Kaiser, Lukasz & Polosukhin, Illia 2017. Attention Is All You Need. In Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S. & Garnett, R. (eds.), *Advances in Neural Information Processing Systems 30 (NIPS 2017)*. Long Beach, CA: Curran Associates, Inc. 5998-6008. <arxiv.org/abs/1706.03762>.
- Vermeerbergen, Myriam; Leeson, Lorraine & Crasborn, Onno Alex (eds.) 2007. *Simultaneity in signed languages: Form and function*. Amsterdam: John Benjamins.
- Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M. et al. 2013. The CNRM-CM5.1 global climate model: Description and basic evaluation. *Climate Dynamics* 40.9. 2091-2121. <DOI: 10.1007/s00382-011-1259-y>.
- von Humboldt, Wilhelm 1836. *Über die Verschiedenheit des menschlichen Sprachbaues und ihren Einfluß auf die geistige Entwicklung des Menschengeschlechts*. Berlin, Prussia: Druckerei der Königlichen Akademie der Wissenschaften.
- Wadler, Philip 1990. Deforestation: Transforming programs to eliminate trees. *Theoretical Computer Science* 73. 231-248. <doi.org/10.1016/0304-3975(90)90147-A>.
- Warstadt, Alex & Bowman, Samuel R. 2022. What artificial neural networks can tell us about human language acquisition. In Lappin, Shalom & Bernardy, Jean-Phillipe (eds.), *Algebraic Structures in Natural Language*. Boca Raton: CRC Press, Taylor & Francis. 17-60.
- Warstadt, Alex; Mueller, Aaron; Choshen, Leshem; Wilcox, Ethan; Zhuang, Chengxu; Ciro, Juan; Mosquera, Rafael; Paranjape, B.; Williams, A.; Linzen, T. & Cotterell, R. 2023. Findings of the BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora. *Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning*. Singapore: Association for Computational Linguistics. 1-6. <doi.org/10.18653/v1/2023.conll-babylm.1>.
- Warstadt, Alex; Parrish, Alicia; Liu, Haokun; Mohananey, Anhad; Peng, Wei; Wang, Sheng-Fu & Bowman, Samuel R. 2020. BLiMP: The

- Benchmark of Linguistic Minimal Pairs for English. *Transactions of the Association for Computational Linguistics* 8. 377-392. <doi.org/10.1162/tacl_a_00321>.
- Warstadt, Alex; Singh, Amanpreet & Bowman, Samuel R. 2018. Neural Network Acceptability Judgments. <[arXiv:1805.12471](https://arxiv.org/abs/1805.12471)>.
- Warstadt, Alex; Singh, Amanpreet & Bowman, Samuel R. 2019. Neural network acceptability judgments. *Transactions of the Association for Computational Linguistics* 7. 625-641. <aclanthology.org/Q19-1040>.
- Warstadt, Alex; Zhang, Yian; Li, Xiaocheng; Liu, Haokun & Bowman, Samuel R. 2020. Learning Which Features Matter: RoBERTa Acquires a Preference for Linguistic Generalizations (Eventually). *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 217-235. <doi.org/10.18653/v1/2020.emnlp-main.16>. <aclanthology.org/2020.emnlp-main.16>.
- Waskan, Jonathan; Harmon, Ian; Horne, Zachary; Spino, Joseph & Clevenger, John 2014. Explanatory anti-psychologism overturned by lay and scientific case classifications. *Synthese* 191,5. 1013-1035. <DOI: 10.1007/s11229-013-0304-2>.
- Wei, Jason; Bosma, Maarten; Zhao, Vincent; Guu, Kelvin; Yu, Adams Wei; Lester, Brian; Du, Nan; Dai, Andrew M. & Le, Quoc V. 2022a. Finetuned language models are zero-shot learners. In *ICLR 2022 Conference Track*. Online: OpenReview
- Wei, Jason; Wang, Xuezhi; Schuurmans, Dale; Bosma, Maarten; Ichter, Brian; Xia, Fei; Chi, Ed; Le, Quoc V. & Zhou, Denny 2022b. Chain-of-thought prompting elicits reasoning in large language models. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K. & Oh, A. (eds.), *Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track*. New Orleans, LA: Curran Associates, Inc. 24824-24837.
- Wexler, Kenneth & Culicover, Peter W. 1980. *Formal Principles of Language Acquisition*. Cambridge, MA: MIT Press.
- Wickelgren, Wayne A. 1969. Context-Sensitive Coding in Speech Recognition, Articulation and Developments. In *Information Processing in The Nervous System: Proceedings of a Symposium Held at the State University of New York at Buffalo 21st-24th October, 1968*. Springer. 85-96.
- Wilcox, Ethan; Futrell, Richard & Levy, Roger 2024. Using Computational Models to Test Syntactic Learnability. *Linguistic Inquiry*. 55,4. 805-848. <doi.org/10.1162/ling_a_00491>.
- Wilcox, Ethan; Gauthier, Jon; Hu, Jennifer; Qian, Peng & Levy, Roger 2020. On the predictive power of neural language models for human real-time comprehension behavior. In *Proceedings of the Annual Meeting of the Cognitive Science Society*. Online: eScholarship.
- Wilcox, Ethan; Levy, Roger; Morita, Takashi & Futrell, Richard 2018. What do RNN Language Models Learn about Filler-Gap Dependencies? In

- Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.* Brussels: ACL. 211-221. <arxiv.org/abs/1809.00042>.
- Wilkenfeld, Daniel A. 2014. Functional explaining: A new approach to the philosophy of explanation. *Synthese* 191,14. 3367-3391. <DOI: 10.1007/s11229-014-0452-z>.
- Wilkenfeld, Daniel A. & Lombrozo, Tania 2020. Explanation classification depends on understanding: Extending the epistemic side-effect effect. *Synthese* 197,6. 2565-2592.
- Wilkinson, Mark D.; Dumontier, Michel; Aalbersberg, IJsbrand Jan; Appleton, Gabrielle; Axton, Myles; Baak, Arie; Blomberg, Niklas *et al.* 2016. The FAIR Guiding Principles for Scientific Data Management and Stewardship. *Scientific Data* 3,1. 160018. <doi.org/10.1038/sdata.2016.18>.
- Williams, Edwin S. 1977. Discourse and Logical Form. *Linguistic Inquiry* 8,1. 101-139.
- Wiltschko, Martina 2008. The syntax of non-inflectional plural marking. *Natural Language and Linguistic Theory* 26,3. 639-694.
- Wiltschko, Martina 2014. *The universal structure of categories. Towards a formal typology.* Cambridge: Cambridge University Press.
- Wiltschko, Martina 2018. Discovering syntactic variation. In Hornstein, N.; Lasnik, H.; Patel-Grosz, P. & Yang, Ch. (eds.), *Syntactic Structures after 60 Years. The Impact of the Chomskyan Revolution in Linguistics. Studies in Generative Grammar [SGG]* 129. 427-460.
- Wiltschko, Martina 2021a. *The grammar of interactional language.* Cambridge: Cambridge University Press.
- Wiltschko, Martina 2021b. Universal underpinnings of language-specific categories. A useful heuristic for discovering and comparing categories of grammar and beyond. In Alfieri, Luca; Ramat, Paolo & Arcodia, Giorgio Francesco (eds.), *Linguistic Categories, Language Description and Linguistic Typology*. 59-99.
- Wiltschko, Martina 2022. Language is for thought and communication. *Glossa: A Journal of General Linguistics* 7,1. <doi.org/10.16995/glossa.5786>.
- Wiltschko, Martina & Heim, Johannes 2016. The syntax of confirmationals. A neo-performative analysis. In Kaltenböck, Gunther; Keizer, Evelien & Lohmann, Arne (eds.), *Outside the Clause. Form and function of extra-clausal constituent.* John Benjamins. 303-340.
- Wiltschko, Martina & Heim, Johannes 2020. Grounding Beliefs: Structured Variation in Canadian English Discourse Particles. In Achiri-Taboh, B. (ed.), *Exoticism in English tag questions: Strengthening arguments and caressing the social wheel.* Cambridge: Cambridge Scholars Publishing.
- Yang, Andy; Chiang, David & Angluin, Dana 2024. Masked hard-attention transformers recognize exactly the star-free languages. In Globerson, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tomczak, J. &

- Zhang, C. (eds.), *Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track*. Vancouver, BC, Canada: Curran Associates, Inc. 10202-10235.
- Yang, Charles D. 2016. *The price of linguistic productivity: How children learn to break the rules of language*. Cambridge, MA: MIT Press.
- Yang, Yuan & Piantadosi, Steven T. 2022. One model for the learning of language. *Proceedings of the National Academy of Sciences* 119,5. e2021865119. <doi.org/10.1073/pnas.2021865119>.
- Yi, Sanghyun; Goel, Rahul; Khatri, Chandra; Cervone, Alessandra; Chung, Tagyoung; Hedayatnia, Behnam; Venkatesh, Anu; Gabriel, Raefer & Hakkani-Tur, Dilek 2019. Towards coherent and engaging spoken dialog response generation using automatic conversation evaluators. In van Deemter, Kees; Lin, Chenghua & Takamura, Hiroya (eds.), *Proceedings of the 12th International Conference on Natural Language Generation*. Tokyo, Japan: Association for Computational Linguistics. 65-75. <DOI: 10.18653/v1/W19-8608>.
- Zhang, Chiyuan; Bengio, Samy; Hardt, Mortiz; Recht, Benjamin & Vinyals, Oriol 2021. Understanding deep learning (still) requires rethinking generalization. *Communications of the ACM* 64. 107-115. <doi.org/10.1145/3446776>.
- Zhang, Yian; Warstadt, Alex; Li, Haau-Sing & Bowman, Samuel R. 2021. When Do You Need Billions of Words of Pretraining Data? In Zong, Chengqing; Xia, Fei; Li, Wenjie & Navigli, Roberto (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Vol. 1*. Online: Association for Computational Linguistics. 1112-1125. <DOI: 10.18653/v1/2021.acl-long.90>. <arxiv.org/abs/2011.04946> (2020).
- Zhao, M.; Golaz, J. C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J. H.; Chen, X.; Donner, L. J.; Dunne, J. P. et al. 2018a. The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. *Journal of Advances in Modeling Earth Systems* 10,3. 691-734. <DOI: 10.1002/2017MS001208>.
- Zhao, M.; Golaz, J. C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J. H.; Chen, X.; Donner, L. J.; Dunne, J. P. et al. 2018b. The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. *Journal of Advances in Modeling Earth Systems* 10,3. 735-769. <DOI: 10.1002/2017MS001209>.
- Zymla, Mark-Matthias 2024. Ambiguity management in computational Glue semantics. In Butt, Miriam; Findlay, Jamie & Toivonen, Ida (eds.), *Proceedings of the LFG'24 Conference*. Konstanz: PubliKon. 285-310. <lfg-proceedings.org/lfg/index.php/main/article/view/59>.

Printed in June 2025
by Industrie Grafiche Pacini Editore Srl
Via A. Gherardesca • 56121 Ospedaletto • Pisa • Italy
Tel. +39 050 313011 • Fax +39 050 3130300
www.pacinieditore.it

