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Properties play a central role in most theories of conceptual 
knowledge. Since computational models derived from word co-occur-
rence statistics have been claimed to provide a natural basis for 
semantic representations, the question arises of whether such models 
are capable of producing reasonable property-based descriptions of 
concepts, and whether these descriptions are similar to those elicited 
from humans. This article presents a qualitative analysis of the prop-
erties generated by humans in two different settings, as well as those 
produced, for the same concepts, by two computational models. In 
order to find high-level generalizations, the analysis is conducted in 
terms of property types, i.e., categorizing properties into classes such 
as functional and taxonomic properties. We discover that differences 
and similarities among models cut across the human/computational 
distinction, suggesting on the one hand caution in making broad gen-
eralizations, e.g., about “grounded” and “amodal” approaches, and, on 
the other, that different models might reveal different facets of mean-
ing, and thus they should rather be integrated than seen as rival 
ways to get at the same information.

1. Introduction

The notion of property plays a central role in cognitive science 
and linguistics. Apart from the proponents of “conceptual atomism” 
(Fodur 1998), a larger consensus exists around the idea that con-
cepts and meanings are complex assemblies of properties or features. 
Various behavioral tasks concerning semantic memory (e.g., catego-
rization, similarity, inference, etc.) are modeled as processing at the 
level of the properties that compose concepts. Properties are them-
selves bits of conceptual structures, and their cognitive status and 
organization is at the center of a wide debate (Salomon & Barsalou 
2001; Vigliocco & Vinson 2007). Independently of the specific form in 
which we can represent properties (feature lists, semantic networks, 
frames, etc.), a key issue is exactly how to capture the very notion 
of being a property of a concept. A possible answer to this question 

Rivista di Linguistica 20.1 (2008), pp. 55-88 (ricevuto nell’ottobre 2008)



Marco Baroni & Alessandro Lenci

56

is that properties are salient aspects or attributes associated with 
or shared by a category of entities, which enter into the constitution 
of the concept for that category. According to this view, the fact that 
a particular feature (color, shape, behavior, action, etc.) is typically 
observed co-occurring with a certain category of entities is strongly 
related to its becoming one of the properties that form the conceptual 
representation of the category.

Concepts and properties surface in language as words and phras-
es, and they provide a semantic interpretation for these linguistic 
elements. Through language, fragments of our conceptual structures 
are communicated to other speakers, in turn influencing their knowl-
edge of the world. A long-standing tradition has pointed out the key 
role played by the way words distribute in texts and co-occur with 
other linguistic expressions in shaping their semantic content. More 
recently, the hypothesis that corpus-derived word co-occurrence sta-
tistics can provide a natural basis for semantic representations has 
also been gaining growing attention in cognitive science (Landauer 
& Dumais 1997; Vigliocco & Vinson 2007). Some variation of the so-
called ‘distributional hypothesis’ – i.e., words with similar distribu-
tional properties have similar semantic properties – lies at the heart 
of a number of computational approaches commonly known as “word 
space models” (Sahlgren 2006). These share the assumption that it is 
possible to represent the semantic content of words in vector spaces 
built through the statistical analysis of the contexts in which words 
co-occur. Distributional models of meaning are directly related to the 
classical discovery procedure of the structuralist tradition (Harris 
1968) and to the collocational analysis typical of corpus linguistics 
(Firth 1957). Both have gained new momentum thanks to the avail-
ability of large-scale textual corpora, access to more sophisticated 
mathematical techniques to model word statistical co-occurrence, and 
– last but not least – the development in the last decades of an infra-
structure for the computerized analysis of linguistic data that has 
turned the distributional approach into an effective tool for building 
lexico-semantic representations from texts.

A major question concerns the relationship between concepts and 
semantic representations as clusters of properties on the one hand, 
and as corpus-based co-occurrence distributions on the other. More 
specifically, we intend to clarify to what extent the linguistic expres-
sions that more significantly co-occur with a word are correlated with 
the properties that human subjects typically ascribe to the concept 
expressed by that word. The long-term aim of this research is to 
achieve a better understanding of the relation between the notion of 
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property of a concept as a cognitive construct, and the semantic prop-
erties of a word as determined by its syntagmatic and paradigmatic 
distribution.

Investigating these issues is an essential step towards an effec-
tive evaluation of the potential for corpus-based distributional rep-
resentations to be taken as models for the human property space, as 
well as towards a real understanding of the type of semantic informa-
tion word space models are able to provide. Although distributional 
models have been proposed as plausible simulations of human seman-
tic space organization, careful and extensive explorations of such 
claim are still lacking, with few notable exceptions such as Vigliocco 
et al. 2004.

With this goal in mind, we will carry out an in-depth comparison 
between corpus-based property spaces generated by distributional 
models and subjects’ elicited property spaces. Two highly different 
types of human property spaces (Section 2) will be compared to two 
different approaches to semantic modeling based on distributional 
data extracted from corpora (Section 3). The four target spaces will be 
analyzed in terms of the type of properties associated with different 
semantic classes of concepts expressed by concrete nouns (Section 4). 
This multi-way analysis allows us to look at similarities and differ-
ences both within human and computational models, and between 
these two categories.

As far as we know, we are the first to propose a qualitative 
comparison of human and computational spaces in terms of prop-
erty types (the computational literature, in particular, has focused on 
objective measures of performance, but very little work has been done 
on the analysis of why the models behave the way they do). Moreover, 
we introduce the new StruDEL word space model (Section 3.2), and 
we might be the first to look at the ESP Game data (Section 2.2) from 
the point of cognitive science.

2. Human property spaces

Many researches in cognitive psychology have recognized the 
added value provided by ‘property generation’ tasks as a source of 
evidence to achieve a better understanding of the human property 
space, i.e., the features that compose the structure of concepts. In 
these tasks, subjects are typically presented with a concept name 
and are asked to generate the properties they consider important 
in order to describe the concept. The elicited data are then collected 
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into ‘semantic feature norms’, i.e., list of concepts with the properties 
most frequently produced by subjects in response to a set of target 
concepts.

Feature norms are used to test the predictions of theoretical and 
computational models of human semantic memory. For instance, Wu 
& Barsalou (in press) used a property generation task to compare 
theories of concepts based on perceptual symbol systems versus those 
that assume amodal properties. Moreover, feature norms have been 
used to construct stimuli for further experimental research on seman-
tic priming (Vigliocco et al. 2004), property verification (Cree et al. 
2006), semantic category specific deficits (Vinson et al. 2003), etc.

Many psychologists warn against a literal interpretation of 
semantic norms as if they were “snapshots” of the property structure 
of concepts (McRae et al. 2005). However, as long as subjects use their 
semantic representations when asked to generate properties for a 
concept, these data can be used as important probes to investigate 
the organization of human semantic knowledge. For instance, they 
can provide information about the ‘type’ of properties generated by 
the subjects, their degree of distinctiveness, as well as the correlation 
between property types and different semantic categories. Some of 
these issues will also be touched in the analysis that we will present 
in Section 4.

Subject elicited properties can themselves be regarded as models 
of the featural organization of concepts, i.e., as models of the property 
spaces that shape the structure and representation of human seman-
tic memory. The major aim of our research is to investigate the cor-
relation between these human-derived models of property spaces and 
corpus-based computational models. To this purpose we have used 
two different sets of subject-generated properties. The first one comes 
from the feature norms of McRae et al. (2005), a well-known resource 
in cognitive science. The second set is instead represented by a corpus 
of image labels collected on the Web in the context of the ESP Game 
initiative (von Ahn & Dabbish 2004). We will now provide a brief 
descriptions of these property spaces, followed by a more detailed 
analysis of their complementary character.

2.1. NORMS: The subject elicited feature norms of McRae et al.

The semantic feature norms described in McRae et al. (2005,  
henceforth NORMS) are the largest set of norms available to date 1. 
NORMS includes semantic features collected from approximately 
725 participants for 541 living (dog) and nonliving (car) basic-level 
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concepts. Each normed concept corresponds to an English noun. The 
selection of nouns covers items most commonly used in various types 
of experiments on semantic memory. NORMS data were collected 
through a questionnaire asking subjects to list features that would 
describe target concepts (presented as words). The instructions also 
included examples of the types of properties that might be listed (e.g., 
physical properties, parts, etc.). Crucially, the stimuli were presented 
out of context, apart from homographs (e.g., bat), which were accom-
panied by a short textual clue to the relevant sense. Participants 
were students of various Canadian and American universities. Each 
concept was normed by 30 subjects.

The collected data underwent manual revision by the experi-
menters to normalize the subjects’ productions, e.g., by ensuring that 
synonymous features were coded identically (e.g., used for transpor-
tation and used for transport were turned into an identical string). 
Features were made more explicit to ensure a better identification 
of the property type (e.g., has was added to productions describing 
parts of an object, such as has legs). In a later phase, the collected 
features were also classified with respect to the basic semantic type 
of the property. McRae et al. (2005) adapted the taxonomy of prop-
erty types developed by Wu & Barsalou (in press cf. Section 4 and 
Appendix B for more details). NORMS also includes a number of 
measures characterizing the distribution of properties for the various 
concepts, such as feature distinctiveness (i.e., the number of concepts 
in which a property appears), number of distinguishing features for 
each concept, etc. The most relevant statistic for our analyses is the 
‘feature production frequency’, i.e., the number of subjects out of 30 
participants that listed a property. This measure is used by McRae 
et al. 2005 to rank the properties of each concepts, and we based 
on it the selection of the properties for the analysis in Section 4. As 
an example, Table 1 reports the top properties of the concept car in 
NORMS.

Table 1. Top 5 properties for the concept car in NORMS, together with their 
semantic types and production frequencies.

Concept Top properties Property types Production 
frequency

car used for 
transportation

function (sf) 19

has wheels external component (ece) 19
has 4 wheels external component (ece) 18
has doors external component (ece) 13
has an engine external component (eci) 13



Marco Baroni & Alessandro Lenci

60

2.2. Describing pictures: the ESP Game

ESP, the second property space we used, was built from a larger 
set of image descriptors collected within the ESP Game initiative (von 
Ahn & Dabbish 2004) 2. The ESP Game is an attempt to label images 
on the Web through volunteer contribution by Internet users. The 
initiative is close in spirit to other enterprises (e.g., Wikipedia, Open 
Mind, etc.) that resort to on-line collaborative work to collect various 
types of knowledge. The ESP Game has however at least two peculiar 
features. First, its goal is to label images with words describing their 
content, for the long-term purpose of improving image search. Second, 
users label the images by playing an online game.

The game is played by two randomly matched partners that see 
the same image and are not allowed to communicate. Players must 
guess the label their partners are typing for each image. When the 
partners have agreed on a label, they get points and move on to the 
next image. They must try to agree on as many images as they can in 
2.5 minutes. Players are free to use whatever word they want, except 
for those that belong to the list of so-called ‘taboo words’ for an image. 
This set includes those words that have already been associated to 
that image by other players. Taboo words guarantee a large varia-
tion in the labels associated to an image. The images presented to the 
players belong to a collection of 350,000 pictures randomly download-
ed from Google. Images can be of all possible sorts: portraits, objects 
in context, landscapes, etc.

The most relevant aspect of the ESP Game is that the players are 
never explicitly asked to describe the image. They just have to guess 
what the partner is thinking and writing (hence the suggestive name 
‘ESP’ for “extra-sensorial perception”). However, since the image is 
the only thing that the partners share, the most natural way for them 
to coordinate their minds is to type words corresponding to salient 
features of the image content. The evaluation by von Ahn & Dabbish 
(2004) indicates that, indeed, “the string on which two players agree 
is typically a good label for the image”. The game by-product is a large 
corpus of images associated with all the labels the players agreed on 3. 
Some examples of this output are: speaker, hear, audio, sound, speak-
ers, black, button (description of music speakers); band, guy, group, 
men oboe, music, hair, flute, violin, instrument, gray (music ensem-
ble); eat, table, people, wine, dinner (group of people eating).

For our purposes, the data collected through the ESP Game are a 
sort of de facto property norms. ESP labels are descriptions of salient 
features of the entities appearing in the images. Thus, they constitute 
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a model of the human property space which is elicited from human 
subjects in a thoroughly spontaneous and uncontrolled way.

The ESP property space we analyze comes from a random sam-
ple of ca. 363,000 labels from the whole ESP corpus. The labels are 
organized into 50,000 sets, each set referring to the same image. The 
labels in the original corpus were not lemmatized. The only process-
ing we performed was to discard all the sets containing words such as 
logo, ad, sign, label, etc., since in logos and other icons an entity can 
be represented in a totally different way from its actual nature (e.g., a 
banana can be blue, etc.).

For each label pair, we count the number of distinct label sets 
(i.e., image descriptions) in which both labels occur. In order to down-
play the importance of frequent, generic labels, we transform these 
raw counts into log-likelihood ratio scores measuring the association 
strength between two labels. Such scores are used to rank the labels 
associated to a given target noun. Thus, the labels associated with a 
target noun (a label in itself) are taken as a characterization of the 
properties of the corresponding concept. Table 2 reports an example 
of the top 5 labels associated with the noun car in the ESP corpus.

Table 2. Top 5 labels co-occurring with car in ESP together with their semantic 
types and their association strength measured by log-likelihood.

Concept Top properties Property types Log-likelihood
car wheel external component (ece) 12.7

road location (sl ) 11.4
truck coordinate (cc) 10.9
wheels external component (ece) 10.2
race associated event (sev) 9.7

2.3. Comparing NORMS and ESP

NORMS and ESP both consist of ranked lists of verbal descrip-
tions of concept properties. Nevertheless, they differ in various 
respects, mostly stemming from the way these data were collected.

First of all, NORMS were elicited in an experimental situation 
and the subjects were explicitly instructed to generate properties for 
a number of concepts. Vice versa, the elicitation context of ESP was 
totally spontaneous, and the players were not told to describe the 
images or any features of the objects. The game task is only to coordi-
nate with the partner. The fact that labels end up describing proper-
ties of some entity in the picture only emerges as a consequence of the 
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subjects’ tendency to focus on salient aspects of the picture they are 
describing. Moreover, target images are a random sample from the 
Web, and thus there is no guarantee that they form a balanced set 
of concepts, nor that they represent prototypical instances of objects. 
Both the spontaneous nature of the task and the lack of control in 
stimulus generation make ESP more similar to corpora than to elici-
tation experiments.

Secondly, NORMS and ESP were obtained in two very different 
property generation tasks. In the former, the subjects produced the 
properties of a concept expressed by a noun written on the question-
naire. Conversely, in ESP the properties were produced by players 
observing an image, i.e., in a sort of ‘implicit’ picture description task.

Last but not least, the property sets in NORMS were elicited by 
presenting the concept nouns ‘out of context’ (apart from few cases of 
homography). Conversely, most of the pictures labeled in ESP repre-
sent ‘situated entities’, i.e., entities with a context, such as for instance 
a cow in a meadow, a person driving a motorbike or drinking beer, etc. 
In some cases, there is a figure clearly emerging from the background, 
while other pictures simply contain a large scene with different entities 
involved in some activity. Since no instruction is provided about which 
entity is to be described, the players are free to parse complex scenes 
as they please, and focus on specific objects with the only constraint of 
maximizing the probability to converge on the partner’s choice.

The differences between NORMS and ESP are particularly rel-
evant in the light of the recent debate in cognitive science on the 
‘situated’ nature of conceptualization (Glenberg & Kaschak 2002; 
Barsalou 2005; Wu & Barsalou in press). According to the situated 
cognition view, concepts are grounded to some extent on sensory-
motor systems, and properties rather than being abstract amodal 
symbols are themselves grounded in perception and action. Wu and 
Barsalou (in press) bring behavioral evidence showing the strong cor-
relation between properties generated by subjects explicitly instruct-
ed to use mental images and the properties produced by subjects that 
did not receive such an instruction. These results are interpreted as 
supporting the view that subjects generate properties of a concept by 
“running” perceptual simulations of its instances. Moreover, Wu and 
Barsalou show that an average of 25% of the properties produced by 
their subjects are related to aspects of the prototypical contextual set-
ting of the concept instances, such as typical actions and locations, 
entities co-occurring in the same context, etc. This fact is taken by 
the two authors as evidence that “Rather than being decontextualized 
and stable, conceptual representations are contextualized dynami-
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cally to support diverse courses of goal pursuit” (Barsalou 2005: 622).
In the next sections, we will tackle the issue of how computa-

tional property spaces correlate with subject-generated semantic 
feature sets. However, our analysis will also focus on the comparative 
analysis of the types of properties in ESP and in NORMS. In fact, the 
peculiar characters of these two models suggest that their comparison 
can provide interesting evidence on the relationship between concep-
tual representations and perceptual features (notice how ESP is by 
design a strongly “situated” property space), as well as on the inter-
play between concepts and context.

3. Word space models

Corpus-based “word space models” (Sahlgren 2006) induce the 
semantic representation of words from their patterns of co-occurrence 
in text. The meaning of a word is thus represented by a vector whose 
dimensions are co-occurrence scores or a function of co-occurrence 
scores. Standard geometrical methods can then be used to assess 
semantic similarity in the vector space.

It is worth pointing out that cognitive work has concentrated 
on ‘concepts’, rather than ‘word meaning’, that is instead the focus 
of word space models. However, the two notions are close enough 
(see discussion in Murphy 2002) that we will apply standard word 
space models to what cognitive scientists might see as a “conceptual” 
task. The issues with a direct comparison of properties generated by 
humans and computational models discussed in Section 4.1 below 
largely arise from differences in the way in which conceptual proper-
ties can be lexicalized, and an important problem we gloss over here 
is that words tend to be polysemous, and thus point to sets of concepts 
rather than single concepts.

We work with two word space models representing different 
traditions. The model we call SVD takes a window-based view of co-
occurrence, where any word that occurs within a certain distance 
to the left or right of the target is treated as context. Since this will 
typically lead to a very large and sparse co-occurrence matrix, models 
of this sort benefit from dimensionality reduction techniques such as 
singular value decomposition.

The StruDEL model takes instead a pattern-based view of co-
occurrence, treating as potential contexts only those words that are 
connected to the target by patterns that might cue an interesting 
semantic relationship. While general word space models rarely adopt 
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this approach (we are only aware of the line of research summarized 
in Poesio & Almuhareb 2008), pattern-based methods are common in 
studies that attempt to identify ‘specific’ types of semantic relations, 
at least since the seminal work of Hearst (1992) on the hyponymy 
relation.

There is a large number of alternative word space models. 
We are not claiming that the ones we selected are the best or most 
interesting ones. However, we do believe that they are fairly rep-
resentative of the two approaches we just sketched, that, in turn, 
account, with important variations, for most models we are familiar 
with.

In particular, the ‘Hyperspace Analogue to Language’ (HAL) 
model (Burgess & Lund 1997) is similar to our SVD, without dimen-
sionality reduction (but with dimension weighting). The popular 
‘Latent Semantic Analysis’ (LSA) model (Landauer & Dumais 1997) 
is similar to our SVD, except that co-occurrence is measured in terms 
of documents rather than word windows. Window-based dimensional-
ity-reduced models have been shown to outperform both non-reduced 
and document-based models at least in the classic TOEFL synonym 
task (Rapp 2003, 2004).

In the dependency-based model of Pado & Lapata (2007) only 
words that are linked by specific syntactic relations are treated as 
potential contexts. This model is intermediate between the window-
based approach, that is purely based on syntagmatic linear order, 
and the pattern-based approach, that tries to zero in on semantically 
meaningful contexts.

3.1. SVD

Our SVD model is based on a lemmatized version of the BNC 4 
with only content words (nouns, verbs, adjectives) preserved. The 
21,000 most frequent words in this version of the corpus (minus 
the top 10 most frequent words) are treated as targets, i.e., words 
for which we build a semantic representation. The top 2,000 words 
(minus the top 10 most frequent ones) are treated as potential 
contexts, i.e., the words whose co-occurrence with the targets is 
recorded.

We build a target-by-context co-occurrence frequency matrix, 
counting only instances in which a potential context word occurs 
within a window of 5 words from a target. The co-occurrence matrix 
generated in this way is then reduced using singular value decom-
position. The reduced matrix has 21,000 rows (the target words) and 
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125 dimensions (the 125 left singular vectors that account for most of 
the variance, multiplied by the corresponding singular values). The 
word space is constructed using the Infomap tool 5.

In a previous experiment with the widely used TOEFL synonym 
set, the same SVD model we are using here reached accuracy around 
91.3%, comparable to the best performance on this task reported by 
Rapp (2003). Thus, we are experimenting with a state-of-the-art SVD-
based model.

What are the ‘properties’ of concepts in SVD? The most straight-
forward approach would be to treat the reduced space dimensions 
as properties. However, these dimensions are hard to interpret. An 
attempt in this direction would be to look at the n words that have 
the highest and lowest values on a dimension, to get the gist of what 
the dimension is about. A preliminary analysis along these lines 
of the top 10 dimensions and of a random sample of 10 other lower 
ranked dimensions suggests that this approach will not work for our 
purposes. This becomes clear by looking at Table 3, that reports the 
top (positive valued) and bottom (negative valued) 5 words associated 
to (randomly chosen) dimensions 5 and 15.

Table 3. Words with 5 top and lowest values on dimensions 5 and 15 of SVD 
model.

Dimension Top words Bottom words
5 political, rhetoric, ideology,

thinking, religious
around, average, approximately
compare, increase

15 juice, colouring, dish, cream, 
salad

police, policeman, road, drive, 
stop

Table 3 clearly illustrates two problems with treating dimen-
sions as properties. First, they correspond to broad domains or topics 
(intellectual life, quantities, food, car traffic…) rather than to specific 
properties (the classification by domain is orthogonal to the one by 
property type). Second, each dimension tends to do double duty (at 
least), with positive value locked onto one domain and lower values 
locked onto another, unrelated domain (it is hard to see a relation 
between, say, food preparation and traffic) – conversely, although it is 
not illustrated here, we found several cases in which different dimen-
sions pointed to the same domain. These findings essentially confirm 
the fairly common statement in the literature that the dimensions 
of SVD matrices are not directly interpretable as semantic features 
(Kintsch 2001). Instead, the only viable way to explore the meaning 
of a vector is by inspecting the words that appear close to it in the 
semantic space.
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Therefore, we took the nearest neighbours of a word in the 
Euclidean space defined by the dimensions (with cosine as the near-
ness measure) to be the SVD-produced ‘properties’ of a word/concept. 
Property identification is not one of the tasks that word space models 
of this sort were designed for, and we realize that their proponents 
could argue that we are putting them to an improper usage. However, 
to the extent that properties are an important aspect of concepts, the 
nearest-neighbour-as-property approach is the most natural one for 
SVD and related models.

Continuing with the car example, the top 5 properties of this con-
cept in the SVD space are listed in Table 4.

Table 4. Top 5 properties (=neighbours) for the car concept in SVD, together with 
their semantic type and cosine.

Concept Top properties Property types Cosine
car van coordinate (cc) .75

driver participant (sp) .73
vehicle superordinate (ch) .71
park action (sa) .70
motorist participant (sp) .69

3.2. StruDEL

Whereas SVD is a ‘garden variety’ word space model, of the 
sort often encountered in the literature, the StruDEL model (for 
Structured Dimension Extraction and Labeling) is first proposed here. 
We will not argue for the virtues of StruDEL (it does have many, but 
they will be presented elsewhere), but rather use it as the representa-
tive of an approach to word space models that differs from the ‘flat co-
occurrence’ of SVD, being based on the search for semantically mean-
ingful patterns. As we already mentioned, StruDEL should be seen as 
a generalization of the pattern-based approach to information mining 
used by Hearst (1992) and many others.

StruDEL builds structured word spaces in two phases. First, it 
uses pattern matching to find and rank potential properties of the 
target words (concepts). Then, it generalizes from the strings connect-
ing concepts and properties to find (lexical correlates of) the relation 
that links them. One fundamental intuition behind StruDEL is that 
true semantic relations will be expressed by a variety of surface reali-
zations. Thus, rather than ranking properties on the basis of token 
frequency, it ranks them on the basis of the number of distinct pat-
terns that connect them to the target concepts.
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Given a list of target nouns and a (POS-tagged) corpus, StruDEL 
looks for nouns, adjectives and verbs that occur in the near of a tar-
get. Only words that are linked to the target by a ‘connector pattern’ 
that follows one of a limited set of templates are considered potential 
properties.

The templates for nominal properties are simple regular expres-
sions that specify that the target and property must either be adja-
cent (the noun-noun compound case) or they must be connected by 
a (possibly complex) preposition, or a verb, or the possessive (’s), or 
a relative such as whose. Optional material, such as adjectives and 
articles, can occur in the connector pattern, whereas other categories, 
such as names and sentence boundaries, act as a barrier blocking the 
potential template match. The template matching component also 
performs basic pattern normalization by replacing all verbs and adjec-
tives that are not in a ‘keep list’ of 50 frequent verbs and 10 frequent 
adjectives with the corresponding POS tags. Table 5 presents (some-
what simplified) 6 examples of the extraction procedure for the con-
cept onion and the candidate property layer. Similar rules are applied 
to the extraction of adjective and verb properties.

Table 5. Examples of input and output to the StruDEL pattern template compo-
nent. Notice the ‘Position’ field, included in the pattern and recording whether the 
concept is the word to the left (onion with different layers) or right (layer from an 
onion).

Input
Output

Notes
Pattern Position

layer from an onion from a right an normalized to a
layers in a red onion in a JJ right red mapped to JJ
onion with different 
layers

with different left frequent adj different
preserved

onions and with their 
layers Ø conjunction blocks

pattern extraction

In the next and crucial step, concept-property pairs are ranked 
based on the number of distinct patterns that link them, ignoring 
the token frequency of the concept-property-pattern tuple. The intui-
tion behind this approach is that a single, frequent concept-pattern-
property tuple could simply be a fixed expression, or more in general 
a combination that is frequent for accidental reasons. On the other 
hand, if concept and property appear with many distinct patterns, i.e., 
their relation is predicated in many different ways, it is more likely 
that they are connected by an inherent semantic link. For example, 
year of the tiger is much more frequent in our corpus than any pattern 
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connecting tail and tiger. However, year of the tiger, because of its 
idiosyncratic nature and proper-noun-like usage, is the only attested 
pattern linking these two words (we do not find: year of some tigers, 
tigers have years, etc.). The relationship of tigers with tails, instead, 
is expressed in a number of ways: tail of the tiger, tail of a tiger, tigers 
have tails, tigers with tails, etc. Pattern type frequency is a better cue 
to semantics than token frequency.

More precisely, our rank is based on the strength of the statisti-
cal association between concepts and properties sampled from the 
list of distinct tuples (akin to sampling concepts and properties from 
a dictionary of distinct longer strings rather than from a corpus). 
Association, measured by the log-likelihood ratio statistic, is better 
than raw frequency since it weights down properties that might occur 
in a number of patterns simply in virtue of their generic nature (e.g., 
year and time, that can occur with almost anything). For practical 
reasons, we preserve only those properties that are very significantly 
(p < .00001) associated with a concept.

In the next step of the StruDEL procedure, we provide a shallow 
description of the relation occurring between a concept and a property 
by generalizing across similar patterns that connect them, and keep-
ing track of the distribution of these generalized patterns in what we 
call the ‘type sketch’ of the pair (the generalized patterns are seen as 
shallow cues to relation ‘types’). We are following here a long tradi-
tion in lexical semantics proposing that semantic relations can be cap-
tured directly by the explicit syntactic material expressing them (see, 
most notably, Levi 1978). We store the whole type distribution asso-
ciated with a concept-property pair, rather than the most common 
type, because this is useful for disambiguation purposes (in might cue 
hypernymy in a sketch with such_as, but location if it occurs with on).

Generalization is performed by another simple rule-based mod-
ule that essentially looks for prepositions, verbs and other ‘meaning-
ful’ components of a pattern. Consider a hypothetical concept-property 
pair occurring with the following patterns: with a number of (2 times), 
with a (1 time), with JJ (1 time), have (1 time) and has (1 time). 
The type sketch for this pair would be: with (66.6%), have (33.3%). 
Illustrative examples of the StruDEL output, including type sketches, 
are presented in Table 6.
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Table 6. Type sketches: properties are annotated with part of speech; log-likelihood 
is the concept-property association score computed as described in the text; types 
are suffixed with position of concept in relation, and only types accounting for at 
least 10% of the distribution are presented.

Concepts Properties Log-likelihood Type sketches
child parent-n 11726.7 of+right (40%), with+right (11%)
child parent-v 120.8 _+right (79%)
lion mane-n 259.1 ’s+left (50%), with+left (15%),

have+left (12%), of+right (10%)
egg female-n 1603.4 produce+right (13%), by+left (12%)

breakfast croissant-n 257.2 for+right (46%), of+left (34%),
with+left (12%)

beach walk-v 687.6 _+right (29%), from+right (24%),
along+right (23%), on+right (13%)

grass green-j 277.6 _+right (58%), is+left (25%),
is_ADV+left (16%)

Thanks to type sketches, StruDEL can be tuned to different 
semantic tasks (e.g., in a telic quale task, one could pick only prop-
erties with for as a prominent type in the sketch). However, here 
we just use them as a filtering device: We weed out from the model 
those concept-property pairs whose dominant type in the sketch is not 
among the top 10 most common types in the whole StruDEL output 
list.

We created a StruDEL semantic space using the 542 concepts of 
McRae et al. (2005) as targets. Model statistics were extracted from 
the large, Web-derived ukWaC corpus (about 2.25 million tokens) 7. 
Notice that in a series of preliminary clustering experiments we also 
trained the SVD model on these data. However, ukWaC-based SVD 
performed systematically worse than BNC-based SVD (StruDEL’s 
pattern extraction component probably acts as a ‘junk filter’, that 
makes this model more robust to the noise inherent to Web data, 
whereas SVD, taking any context into account, is not as robust).

Given that StruDEL is explicitly designed to represent concepts 
in terms of their properties, the evaluation conducted here is entirely 
straightforward: we pick and analyze the top 10 properties (ranked by 
log-likelihood ratio and filtered by common type as described above) 
of each target concept.

The top 5 properties of car for StruDEL are presented (without 
type sketches) in Table 7.
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Table 7. Top 5 properties for the concept car in StruDEL, together with their 
semantic types and association strength measured by log-likelihood.

Concept Top properties Property types Log-likelihood
car drive activity (sa) 1795.4

driver participant (sp) 1329.7
park activity (sa) 985.4
road location (sl ) 839.3
garage location (sl ) 704.3

4. Property Analysis

4.1. Design and materials

We selected 44 concrete nouns belonging to 6 semantic categories 
from the feature norms in McRae et al. (2005): 4 categories of natural 
entities (birds, ground animals, fruits 8 and greens) and 2 categories 
of artefactual entities (vehicles and tools). We assigned the nouns 
to their category, since no classification was available in the norms. 
The complete list is reported in Appendix A. The mean frequency of 
the nouns in the BNC is 3,320 (σ = 5,814). The noun with the low-
est frequency is chisel (233) and the one with highest frequency is 
car (35,374). ANOVA revealed no significant difference between the 
six semantic categories with respect to the log-frequency of their ele-
ments (F = 1.0964, p = 0.3784). We then extracted the top 10 proper-
ties associated with each noun in NORMS, ESP, SVD and StruDEL, 
obtaining 1,727 distinct concept-property pairs (some pairs are 
repeated across spaces, and some concepts are associated with less 
than 10 properties in ESP).

Analyzing the specific properties associated to the concepts would 
seem the most straightforward way to compare the property spaces. 
However, this solution proved not to be viable in practice. In fact, in 
preliminary experiments with direct properties, the overlap among 
human and computational models was never above 21%, and the cor-
relation among ranks of overlapping properties was not above 0.16 9. 
These low values are partially due to genuine differences among spac-
es, but they are also often due to normalization problems. For exam-
ple, if one space lists noisy as a salient property of helicopters, where-
as another space includes loud, it is extremely hard to determine by 
automated means that these are different lexicalizations of the same 
property. Moreover, an analysis at such a granular level would not 
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allow us to see the generalizations in the kinds of properties that dif-
ferent spaces assign to different concept categories.

These considerations prompted us to compare the property 
spaces at a more abstract level, i.e., at the level of ‘semantic types’. 
Therefore, the properties extracted from ESP, SVD and StruDEL 
were classified according to the hierarchical coding scheme used in 
McRae et al. (2005). For NORMS, we simply adopted the classifica-
tion available in McRae et al. (2005) (cf. Section 2). The classification 
(reported in Appendix B) consists of an ‘ontology’ of property types 
organized under 4 main classes:

• category (c) – properties providing taxonomic information 
about a target concept (e.g., its superordinate concept);

• entity (e) – properties describing an entity’s internal and exter-
nal composition, typical behaviour, etc.;

• situation (s) – properties referring to aspects of the contextual 
situation in which an entity may appear (e.g., typical function, other 
entities co-occurring in the same scene, actions performed on an enti-
ty, typical location, etc.);

• introspective (i) – properties describing a subject’s mental or 
affectional state towards an entity.

A special category Out has been added to the original scheme, to 
mark those cases in which the property is not prototypically related to 
the target concept. Obviously, this class never occurs with the proper-
ties extracted from NORMS. Conversely, Out cases are variously 
attested in the other property spaces, mainly as a consequence of the 
computational processes used to generate them.

The concept-property pairs from different spaces were merged 
before annotation, to avoid biases coming from our a priori expecta-
tions about the models. Moreover, to minimize differences between 
the annotation of McRae and colleagues and ours, we adopted their 
labels for pairs in their database and present in other spaces as well 
and, more in general, we looked at the choices made in their database 
as our main source of guidance and annotation policies.

We independently annotated each concept-property pair, and dis-
cussed all the cases of disagreement. After a few rounds of training in 
applying the classification scheme to random samples extracted from 
the concept-property pair set, we decided to merge synonym, coordi-
nate and subordinate properties under the common type coordinate 
(cc). This change was prompted by the complexity of discriminating 
between these fine-grained property types out of context (is tiger a 
hyponym or a co-hyponym of cat?), potentially resulting in coding 
inconsistencies.



Marco Baroni & Alessandro Lenci

72

Of course, several classification decisions were rather difficult. 
Often these difficult choices cut across the main classes of the ontol-
ogy. For example, are bowls and pans coordinates (cc) or situationally 
associated entities (se)? Is cutting the function of scissors (sf) or their 
typical action (‘behaviour’: eb)? Unfortunately, the ontology misses 
natural classes cutting across the proposed major categories, such as 
‘related entities’ – that can be taxonomically related (cc) or situation-
ally related (se) – and “activities” (eb, sa, sf). Our analysis will focus 
more on such natural classes – that let important generalizations 
about the nature of different spaces emerge – than on the high level 
categories of the ontology shown above.

4.2. Data cleaning

Out cases were unequally distributed, accounting for 30% of the 
properties in ESP, 11% in SVD and 7% in StruDEL. We attribute the 
over-representation of Out in ESP to the fact that often ESP pictures 
describe complex scenes. For example, sky comes up as one of the top 
properties of elephants since they are more likely to be photographed 
outdoors. Having ascertained this, we looked at whether the distribu-
tion of Out cases across categories (ground animal, fruit, etc.) changed 
from property space to property space. A logistic regression with con-
cept category, property space and their interaction as factors and Out 
responses as independent variable showed that Out is significantly 
(p < 0.01) more likely in ESP than in SVD or StruDEL, and that tools 
are significantly (p < 0.05) more likely to trigger Out responses than 
the other concept types (probably because they occur almost by defini-
tion in complex scenes). Importantly, there is no significant interac-
tion. Thus, we can remove the Out cases from the analysis without 
inserting a bias in the model comparison.

In order to avoid sparseness problems and to simplify the analy-
sis, we decided to ignore rarely used property types. Choosing a 
cut-off point was easy, since we observed a large interval between 
property types eb, that occurs 85 times in total across the spaces, and 
sp, that occurs 36 times only. Thus, we removed the latter and all the 
rarer properties, i.e.: eae, eci, em, eq, esi, esys, ew, ie, in, io, sev, sp, st 
(refer to Appendix B for the codes). The full frequency table, including 
the rare types, is presented in Appendix C.

4.3. General distribution of properties

We first look at the overall distribution of property types across 
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property spaces.  Table 8 reports χ2 values computed on pairwise 
space-by-property contingency tables. The smaller the value, the bet-
ter the fit between two spaces in terms of property type distribution 
(none of the fits is particularly good in absolute χ2 terms, but we are 
interested in relative comparisons).

Table 8. Pairwise X2 fits among spaces.

NORMS ESP SVD StruDEL
NORMS – 144 431 208
ESP 144 – 140 143
SVD 431 140 – 261
StruDEL 208 143 261 –

The first interesting datum is that ESP is (comparatively) close 
to each of the other spaces. As we will see below, ESP looks like a sort 
of ‘average’ model with no single property type that is seriously over- 
or under-represented with respect to the other spaces. To the extent 
that we think that all other spaces have something going for them, 
this makes ESP rather attractive as a ‘balanced’ space (keep in mind, 
however, that we are analyzing a ‘cleaned’ version of the ESP space, 
that would otherwise be characterized by about 1/3 Out cases: see 4.2 
above). ESP is similar to NORMS in that it is based on human-elicited 
data; however, ESP concept-by-property characterizations are implicit 
in patterns of co-occurrence of words in descriptions of random images 
and have to be extracted with distributional techniques similar to 
those used for corpora. This double nature gives ESP an intermediate 
status among property spaces. Interestingly, ESP is closer to both SVD 
and StruDEL than the two corpus-based models are to each other.

Strikingly, StruDEL has a better fit to NORMS than to SVD, 
the latter being the ‘outlier’ space, the one most distant from both 
NORMS and StruDEL. We have here an argument for StruDEL as 
a better approximation to the human property space. This is not sur-
prising, given that StruDEL, unlike SVD, was designed to capture 
properties. More importantly, this result warns against treating ‘cor-
pus-based’ models as a monolithic whole, assuming that, no matter 
how much they differ, these differences will not be as large as those 
between humans and distributional models. The data in Table 8 show 
clearly that this is not the case. Any conclusion one might reach about 
a specific corpus-based model will not necessarily apply to other cor-
pus-based approaches as well.

We take now a closer look at the property types that charac-
terize each space using the summary in Figure 1. This is a ‘mosaic 
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plot’ (Meyer et al. 2006) that visualizes the property-space-by-prop-
erty-type contingency table through rectangles whose areas are pro-
portional to observed frequencies. Each row represents a property 
space. The columns correspond to property types, with type labels at 
the top of the plot and redundantly coded inside cells that are large 
enough to allow this (if the cell is too narrow, its property type must 
be inferred from the list at the top of the plot and/or by the labels of 
the surrounding cells: for example, the second rectangle of the SVD 
row represents the SVD-by-ch count). Grey shadings are used to high-
light strongly over- or under-represented cells (Zeileis et al. 2005); in 
particular, cells with absolute Pearson residuals (quantifying the con-
tribution of a single cell to the χ2 statistic) between 2 and 4 are light 
grey, and cells with Pearson residuals above 4 are dark grey (Pearson 
residuals approximate a standard normal distribution, thus the 2 and 
4 thresholds correspond, approximately, to 0.05 and 0.0001 signifi-
cance levels).

Figure 1. Distribution of property types across property spaces.
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Looking at NORMS first, we notice the relatively high frequency 
of external components (ece) and surface properties (ese), and the 
almost complete lack of coordinate (cc) and situationally related (se) 
entities. External parts (like the wheel of a car) and surface proper-
ties (like the fact that a banana is sweet and yellow) are obviously 
perceptually important characteristics of concrete concepts, and they 
are almost completely missed by our corpus-based models. This sug-
gests an important line of research in improving such models, per-
haps incorporating visual cues into the distributional statistics (the 
ESP space does not have a similar problem). Coordinate and situ-
ationally related entities, on the other hand, might be triggered by 
free association tasks (dog in response to cat) but they are unlikely 
properties in a concept description (dog as a characteristic property 
of cat). In this case, the problem is mainly with the SVD space, where 
cc and se are by far the most common property types. Interestingly, in 
this respect StruDEL is the closest model to NORMS (having a lower 
number of coordinate and related entities), whereas ESP does have its 
fair share of these properties (not surprisingly, given that pictures are 
scene descriptions and scenes are quite likely to include coordinate 
– e.g., different kinds animals – and related entities – e.g., spoons and 
bowls). Another similarity between NORMS and StruDEL pertains to 
the hypernym (ch) and entity behaviour (eb) properties, that are well 
attested in these models only. Both functions (sf) and locations (sl) are 
well represented in NORMS as well as ESP and StruDEL, whereas 
SVD under-represents both.

It is intriguing that situated categories (sa, se, sf, sl) account for 
about one fourth of the NORMS properties, in a very good match with 
what has been reported by Wu & Barsalou (in press). All other spaces 
have a higher proportion of situated properties. Still, given the consid-
erations we made in Section 4.1 on the spurious nature of high level 
categories such as situation, we are not sure of how meaningful this 
observation really is. For example, SVD features mostly se’s, that are 
arguably closer to ‘categorical’ property cc than to situational property 
sf – function – that is instead more typical of ESP and StruDEL.

Turning now to ESP, the plot confirms that this is in many 
respect the “average” space, with no cells that deviate from the 
expected values in a highly significant way. The most common types 
are those that are useful to describe an object in a photographic con-
text: coordinate and related entities (cc and se), external parts and 
properties (ece, ese), location (sl). Interestingly, the function of objects 
(sf) is also well represented (perhaps scenes captured in pictures tend 
to show objects engaged in their characteristic function: e.g., bottles 
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are more likely to appear in scenes where somebody is drinking?). 
Other ‘activity’ properties (eb and sa), on the other hand, are almost 
absent. This might be due to the fact that entity behaviours and activ-
ities will often not be captured by static pictures, although this claim 
deserves further investigation (it is not hard to imagine, say, pictures 
of somebody training a dog or driving a car). ESP is also under-repre-
senting hypernyms (ch), which might be explained by the contingent 
and visual nature of salient information in pictures (one picture might 
be described as a brown dog wearing socks, but the fact that the dog 
is an animal would not add much to the picture description).

Coming to the computational models, as we said, SVD is clearly 
the outlier here, with most of its properties being related entities – 
either taxonomically related (cc: dog and cat) or situationally related 
(se: spoon and bowl). This is not surprising given that SVD does so 
well in synonym detection tasks (synonyms are the limiting case of 
taxonomic relatedness). SVD neighbours (that we are interpreting as 
properties) are based on paradigmatic similarity, i.e., the tendency to 
occur in the same linguistic contexts. However, a concept (say, dog) 
and its properties (say, tail) rarely occur in exactly the same narrow 
context: they will rather occur near each other. In future studies, we 
would like to check whether a SVD model based on larger context 
windows (dozens of words, or whole documents), and thus exploiting 
information from a wider syntagmatic span, can capture other kinds 
of properties beyond related entities.

StruDEL presents a more balanced property space, with counts 
comparable to those in NORMS for hypernyms (ch), typical behav-
iours (eb), function (sf) and locations (sl). Like NORMS, StruDEL 
avoids coordinates (cc) and, to a lesser extent, situationally related 
entities (se). On the other hand, StruDEL misses external compo-
nents and properties (ece, ese) almost completely. An interesting fea-
ture of this model is how it is the one that highlights functional/activ-
ity properties the most: eb, sa, sf. This is probably due to the fact that 
StruDEL includes rules that specialize in the extraction of properties 
expressed by verbs from corpora.
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To conclude, the previous analysis has taken NORMS as the de 
facto gold standard on which to evaluate the other spaces. However, 
the fact that different spaces specialize in different kinds of proper-
ties (and, with the exception of ESP – that has a sizable Out prob-
lem – they produce relevant kinds of properties) is in other respects 
very positive. In particular, we can use the models/spaces in a comple-
mentary way in order to build a rich and multi-faceted view of human 
semantic cognition.

4.4. Properties of different categories of concepts

The distribution of property types across concept classes can be 
best observed in Figure 2, that contains “association plots” between 
property types and concept categories for each property space. 
Association plots (Meyer et al. 2003) represent the pattern of devia-
tion from independence between two categorical variables by visual-
izing the table of Pearson residuals derived from their contingency 
table, thus showing the net contribution of each cell to the global 
X2 statistic. Rectangles have height proportional to the correspond-
ing Pearson residual. The sign of the residual – i.e., whether a cell 
is over- or under-populated – is coded by the position relative to the 
baseline. Width is proportional to the square root of the expected 
frequencies, so that the areas of the rectangles are proportional to 
the non-normalized difference between observed and expected val-
ues. The most important information for our purposes is encoded in 
the heights, that represent, for each space, the degree to which the 
observed frequencies of property types for a concept category depart 
from the counts expected given the overall distribution of the space 
(i.e., departures from the space-specific distributions depicted in the 
rows of Figure 1). Like in Figure 1, the shades of grey of the rectan-
gles correspond to Pearson residuals with absolute values larger than 
2 (light grey) and 4 (dark grey) respectively. We will concentrate our 
analysis on such large residuals, cueing the most salient properties of 
each concept category.
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Figure 2. Positive and negative deviations from the expected value of properties 
across concept categories, for the four models.

The association plot for NORMS shows a major contrast between 
animals and tools, with the latter being mainly characterized by func-
tional properties (sf), that are instead strongly under-represented in 
birds and ground animals. Zooming in on the natural domain, ani-
mals are more reliant on properties referring to their typical behavior 
(eb), which are instead below expected distribution with vegetable cat-
egories. The latter concepts do not behave homogeneously. Fruits are 
mostly characterized by properties referring to their external surface, 
while vegetables show a significant dominance of properties referring 
to typical activities (typical ways of cooking and eating them, e.g., 
boiling for potatoes, etc.) and to associated entities. Interestingly, 
vehicles are the only category that is not identified by any specific 
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property type (except for a weak presence of eb properties, such as fly-
ing for helicopter).

We can compare the distribution of property types by concepts 
classes in NORMS with the data reported in Vinson et al. (2003), 
resulting from the analysis of semantic feature norms elicited for 
a set of objects and action concepts. Vinson et al. (2003) claim that 
artifacts have significant more functional features than natural con-
cepts. Although they use a different property classification scheme, 
their results are strikingly similar to NORMS with respect to tools 
and its mirror image represented by animals. Vinson et al. (2003) 
also observe that visual features (i.e., referring to the sense of vision) 
are more significantly associated with animals, fruits and vegetables. 
These results are partially confirmed in NORMS. The ese properties 
that dominate fruits actually refer to external, visible features. On 
the other hand, we have said above that animals are instead char-
acterized by behavioral properties. McRae et al. (2005) cross-clas-
sified the properties in their norms with an orthogonal taxonomy 
referring to the brain area where properties are plausibly computed. 
Interestingly, in this parallel classification scheme most of the eb 
properties appearing with our animal concepts are marked as visual.

The preferred association of functional properties with tools 
appears also in ESP, together with their symmetric under-represen-
tation in animals. However, now sf is not the only hallmark for tools, 
which are strongly characterized by associated entities too (typically, 
objects co-occurring with the target, e.g., knife with spoon). Prima 
facie, this is not surprising, since surely tools often appear in pic-
tures together with other objects (take for instance pen and paper). 
However, this can not be the only explanation, since, in ESP images, 
entities belonging to any concept category appear in scenes with other 
objects. Yet, it seems that players single out associated entities par-
ticularly with tools (where there might be a stronger functional link 
between the concept and the associated entities).

An interesting parallelism between ESP and NORMS is the sali-
ence of eb with animals, although now association is limited to birds, 
while ground animals show a preference for being described in terms 
of their parts. Fruits and greens present patterns that are much dif-
ferent from to the ones in NORMS. Both classes are characterized by 
the over-representation of their hypernyms (ch), which do not play a 
significant role in distinguishing any category in NORMS. Moreover, 
now vehicles appear to be strongly characterized by location features 
(e.g., road for cars) and by typical activities (e.g., driving). Overall, 
ESP shows very distinct distributions of properties across concept 
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categories. This is particularly interesting in the light of the ways 
in which ESP labels are generated. In the ESP Game, labels are the 
result of an autonomous and spontaneous parsing of the scene carried 
out by two players. In scanning the scenes in the pictures, it seems 
that concept categories make different property types be more salient 
for players that must converge on a choice.

Coming to the corpus-based property spaces, we first notice a 
striking parallelism between StruDEL and NORMS, especially with 
respect to the key role of functional features with tools and its sym-
metric under-representation with animals, which instead are again 
globally characterized by behavioral properties. This is an impor-
tant parallelism, also because the animal/tool distinction is one 
for which there is some of the most robust neuro-imaging evidence 
(Martin 2007). Other two elements of similarities concern the fact 
that taxonomic properties do not play a significant role with any cate-
gory, and the association of vegetable concepts with typical activities. 
Differently from NORMS, se plays an important role in the StruDEL 
representation of tools, together with sf, and in close parallelism with 
ESP. StruDEL is also similar to the latter with respect to the promi-
nence of location properties with vehicles. A major contrast between 
StruDEL and the two human-generated property spaces is instead 
given by the fact that no category is specifically associated with either 
surface properties or parts, surely a consequence of the fact that these 
types of properties are very rarely captured by this model.

Similarly to what we noticed in Section 4.3, the property-by-
category distribution also reveals that StruDEL is more strongly 
correlated with the human-property spaces than with SVD, which is 
confirmed as a sort of outlier under many respects. For instance, SVD 
is the only model to characterize birds with surface properties, and 
the robust association of hyponyms with fruits we observe in ESP is 
even stronger in SVD. Conversely, this model goes together with ESP 
and StruDEL in having locations as significantly related to vehicles. 
The rather ‘excentric’ character of the SVD property space is however 
best revealed by the fact that, while the other models (although to 
different extents) assign a prominent role to behavioral properties 
for animals and to functional ones for tools, neither of these correla-
tions is observed in SVD. Tools are now strongly characterized only 
by associated entities, while sf plays a significant role with vehicles. 
We already observed in the mosaic plot of Figure 1 the general bias of 
SVD towards paradigmatic associations, to which se properties belong 
(together with cc). The interesting fact now is that this bias towards 
se is not equally distributed among the various concept categories. 
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Like ESP, SVD tends to single out associated entities especially with 
tools. This points towards a more sophisticated interplay between the 
general tendency of SVD to highlight paradigmatic associations, and 
the specific semantic organization of particular conceptual categories.

To conclude, once more we found that both similarities and 
divergences cut across the human-/corpus-generated divide. This 
points, again, to a certain complementarity between models, where it 
is not always necessarily the case that NORMS is the ‘best’ one. For 
example, ESP and StruDEL, very sensibly, assign typical location as 
a salient property of vehicles, whereas this is completely missed by 
NORMS.

5. General Discussion

It is now time to go back to the main issue that we raised at the 
outset of our work, i.e., to what extent the linguistic expressions co-
occurring with a word are correlated with the properties that compose 
its concept. The results of our analyses confirm that there is no easy 
answer to such a question. The reasons depend both on the cognitive 
construct of property as emerging from human-elicited data, and on 
the behavior of the computational models used to approximate such 
a notion. The comparison between NORMS and ESP has revealed 
important parallelisms, but also many equally salient divergences, 
both at the level of global distribution of property types, as well as 
with respect to specific concept categories. This fact suggests impor-
tant differences within human property spaces, and warns against 
taking a single or specific set of human generated data as ‘the’ gold 
standard with which distributional models can be compared. A via-
ble hypothesis is that there is actually no unique human property 
space, but rather a representational core that is variously modulated 
depending on the task, context, medium and mode of expression, etc.

Similar caveats also extend to corpus-based, distributional mod-
els. In our experiments, two different approaches to carve semantic 
knowledge out of corpus-based word distributions have been shown 
to produce highly different semantic spaces, with little if anything 
in common. These are not simply alternative ways to acquire seman-
tic information from texts, but they are rather methods that extract 
different portions and aspects of the semantic space. StruDEL has 
a better fit to NORMS, but the picture becomes more complex once 
we also take into consideration the variation within human models, 
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since ESP appears to be equally distant from both computational 
spaces. Great caution should be used when interpreting corpus-based 
models as simulations of human semantic space. Since corpus-based 
models do not behave uniformly as far as the shape of the semantic 
space they produce, the specific way in which they processes corpus 
data and derived semantic information must be taken into account. 
A poor match between corpus-based data and subjects’ elicitations 
may be the result of a complex array of factors concerning the peculi-
arities of the computationally (and experimentally) derived semantic 
space.

In Section 2.3, we reported the result from Wu & Barsalou (in 
press) that property spaces generated by subjects in neutral condi-
tions are more strongly correlated to property spaces generated by 
subjects instructed to use mental images than to property spaces 
generated by subjects instructed to use word associations. Wu and 
Barsalou take this as evidence supporting the hypothesis that the 
human property space is not “amodal” – like the one based on simple 
word associations – but it is instead inherently grounded on percep-
tual modalities, through the system of perceptual simulations of con-
cept instances that are run by subjects in producing properties. The 
results of our experiments warn against drawing similar straightfor-
ward conclusions. First, we saw in Table 8 that ESP, a strongly ‘per-
ceptually grounded’ space, given that labels are generated by describ-
ing pictures, is equally close to NORMS as it is to SVD and StruDEL, 
that have all the hallmarks of ‘amodal’ property spaces, based pure-
ly on corpus-derived word associations. Moreover, the analysis of 
Figure 1 and, especially, Figure 2 suggests that there are important 
similarities between NORMS and StruDEL. This raises the question 
of to what extent property sets generated by subjects are determined 
by statistically significant correlations between linguistic structures 
to which subjects are exposed to in their communicative tasks. Our 
experiments do not allow us to advance any further hypothesis with-
out the risk of being purely speculative. Yet, they suffice to highlight 
the complexity of the relationship between computational linguistic 
and cognitive research, confirming at the same time all the potential 
offered by their encounter.

Having conducted the qualitative analysis we presented here, 
we would like, in future work, to see how the different natures of the 
models lead to different performance in tasks such as unsupervised 
clustering by concept category, modeling free association or syno-
nym detection. Given the almost complementary nature of SVD and 
StruDEL, for example, we would not be surprised to find out that 
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they succeed in modeling different aspects of semantic cognition. At a 
more technical level, we would like to experiment with a SVD model 
derived with larger context windows, to give more weight to syntag-
matic, as opposed to paradigmatic, neighbours. Finally, our analysis 
here has ignored possible effects due to specific concept categories 
(say, cherries or cars) and property types (say, red or barking). We 
are currently exploring the possibility of using multi-level modeling 
techniques for an analysis that takes these effects into account.

Despite the need for this important further work, we hope that 
the results we reported here contributed to a better understanding of 
how properties shape conceptual knowledge both in human tasks and 
in computational models.

Addresses of the Authors
Marco Baroni, CIMeC (Centro Interdipartimentale Mente/Cervello), 
Università di Trento, c. Bettini 31, I-38068 Rovereto TN 
<marco.baroni@unitn.it>

Alessandro Lenci, Dipartimento di Linguistica, Università di Pisa, 
v. S. Maria 36, I-53126 Pisa 
<alessandro.lenci@ilc.cnr.it>

Notes

* We would like to thank Luis von Ahn for providing us with the ESP data, 
Ken McRae and colleagues for making their norms publicly available, Dominic 
Widdows and colleagues for the Infomap toolkit. We thank Eduard Barbu, Brian 
Murphy and Massimo Poesio for many interesting discussions and ideas, and for 
pointing out important resources and references, and Emiliano Guevara for useful 
feedback.
1 The norms can be downloaded from the Psychonomic Society Archive of Norms, 
Stimuli, and Data (http://www.psychonomic.org/archive).
2 http://www.espgame.org/
3 More precisely, the labels that are permanently associated with the images in 
the ESP collection are those that have been agreed on by n pairs of players, with n 
a “threshold of goodness” empirically fixed by the ESP designers.
4 http://www.natcorp.ox.ac.uk/
5 http://infomap-nlp.sourceforge.net/
6 The full patterns also inclue POS tags and lemmas (from/IN/from_a/DT/a), 
as well as morphological information about target and property (so that layers 
from an onion and layer from an onion produce different patterns because of the 
number difference in the property). These aspects are omitted for readability.
7 http://wacky.sslmit.unibo.it
8 All fruit names in the set could denote the corresponding trees, but at least 
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from the NORMS responses it is clear that the single fruit sense is more salient (a 
cherry is red and sweet, etc.).
9 We would like to thank Brian Murphy for kindly providing us with these data.
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A. Concepts and concept categories

Target items used for property analysis, together with their cat-
egories.

Word Semantic Category
chicken bird-animal-natural
duck bird-animal-natural
eagle bird-animal-natural
owl bird-animal-natural
peacock bird-animal-natural
penguin bird-animal-natural
swan bird-animal-natural
cat groundAnimal-animal-natural
cow groundAnimal-animal-natural
dog groundAnimal-animal-natural
elephant groundAnimal-animal-natural
lion groundAnimal-animal-natural
pig groundAnimal-animal-natural
snail groundAnimal-animal-natural
turtle groundAnimal-animal-natural
banana fruit-vegetable-natural
cherry fruit-vegetable-natural
pear fruit-vegetable-natural
pineapple fruit-vegetable-natural
corn green-vegetable-natural
lettuce green-vegetable-natural
mushroom green-vegetable-natural
onion green-vegetable-natural
potato green-vegetable-natural
bottle tool-artifact
bowl tool-artifact
chisel tool-artifact
cup tool-artifact
hammer tool-artifact
kettle tool-artifact
knife tool-artifact
pen tool-artifact
pencil tool-artifact
scissors tool-artifact
screwdriver tool-artifact
spoon tool-artifact
telephone tool-artifact
boat vehicle-artifact
car vehicle-artifact
helicopter vehicle-artifact
motorcycle vehicle-artifact
rocket vehicle-artifact
ship vehicle-artifact
truck vehicle-artifact
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B. Property classification scheme

Property classification scheme, adapted from Wu & Barsalou (in 
press) and McRae et al. (2005).

Class Property Type Code Example
Taxonomy (c) Coordinate cc cat-dog

Superordinate ch cat-animal

Entity (e) Associated abstract 
entity

eae telephone-information

Entity behavior eb lion-roar
External component ece truck-wheel
External surface 
property

ese banana-yellow

Internal component eci car-engine
Internal surface 
property

esi pineapple-crunchy

Larger whole ew cow-cattle
Made-of em bottle-glass
Quantity eq pear-slice
Systemic feature esys elephant-wild

Situation (s) Associated entity se spoon-bowl
Associated event sev watermelon-picnic
Function sf scissors-cut
Action sa banana-eat
Location sl ship-port
Participant sp boat-fisherman
Time st pineapple-summer

Introspective 
(i)

Cognitive operation io snail-like a slug

Evaluation ie pineapple-delicious
Negation in penguin-cannot fly
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C. Results

Raw property type counts for each target space.

Property Type NORMS ESP SVD StruDEL
cc 3 51 112 13
ch 43 14 16 32
eae 0 0 1 6
eb 37 8 1 39
ece 97 40 13 16
eci 12 5 8 9
em 24 6 1 1
eq 0 0 0 1
ese 57 30 7 9
esi 12 0 1 1
esys 20 0 9 5
ew 0 0 4 5
ie 3 0 1 0
in 3 0 0 0
io 1 0 0 0
Out 0 128 49 27
sa 5 8 26 93
se 8 47 147 43
sev 0 4 8 6
sf 70 37 20 61
sl 28 43 8 44
sp 15 4 7 10
st 1 1 1 1


