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Considerable evidence has accrued on the role of paradigms as both 
theoretical and cognitive structures regimenting the way words are processed 
and acquired. The evidence supports a view of the lexicon as an emergent 
integrative system, where word forms are concurrently and competitively 
stored as repeatedly successful processing patterns, and on-line processing 
crucially depends on the internal organisation of stored patterns.

In spite of converging evidence in this direction, little efforts have been 
put so far into providing detailed, algorithmic models of the interaction 
between lexical token frequency, paradigm frequency, and paradigm regular-
ity in word processing and acquisition. Here we propose a neuro-computa-
tional account of the frequency/regularity interaction, and discuss some of its 
theoretical implications by analysing experimental results in the computa-
tional framework of Temporal Self-Organising Maps. Detailed quantitative 
analysis shows that the model provides a unitary explanatory framework 
bringing together insights from neighbour family effects on word recognition 
and production, evidence from family size effects in serial lexical access and 
paradigm-based dynamics in lexical acquisition.

Keywords: Lexical access, word recall, serial processing, parallel activation, 
inflectional paradigms, mental lexicon.

1. Introduction 

In spite of converging evidence on the role of morphological fami-
lies and paradigmatic relations in the developmental course of lexical 
acquisition and processing, there have been no attempts to simulate 
the interdependency between simple mechanisms of lexical activa-
tion/competition and effects of lexical token frequency, paradigm fre-
quency, and paradigm regularity in word processing and acquisition. 
One of the fundamental limitations of most existing computational 
models of word recognition and production (McClelland & Elman 
1986; Norris, McQueen & Cutler 1995; Levelt et al. 1999; Gaskell & 
Marslen-Wilson 2002; Chen & Mirman 2012; among others) is that 
they either focus on processing issues, by analysing how input pat-
terns can be mapped onto existing stored exemplars during process-
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ing, or focus on storage, by entertaining different hypotheses concern-
ing stored representations and how they are affected by differences 
in input data distribution. We appear to be missing more ‘Integrative’ 
(neuro)computational models of the mental lexicon (Marzi & Pirrelli 
2015), where (i) structures that are repeatedly activated in process-
ing an input word are the same units responsible for its stored rep-
resentation, and (ii) they are made develop dynamically as the result 
of learning. In our view, truly integrative models would lead to a 
better understanding of the dynamic interaction between processing 
and storage, and make room for a careful analysis of the empirical 
consequences of such a mutual implication on a sizeable amount of 
realistic lexical data. This is the goal of the present study. By running 
two simulations of the acquisition of verb paradigms in German and 
Italian through temporal self-organising artificial neural networks 
(or Temporal Self-Organising Maps, TSOMs), we investigate the 
time-bound dynamics of co-activation and competition in the acqui-
sition of families of inflected data. In addition, we examine whether 
the same basic principles can correctly predict the direction of lexical 
neighbour effects on lexical access and production of the same data. 
Quantitative and qualitative analyses of our experimental results 
show that a unitary account of paradigm-based lexical acquisition 
and processing effects of neighbour families is possible, and that both 
acquisition and processing effects are amenable to independently 
motivated computational principles of Hebbian learning.

Firstly, we sketch the theoretical background (Section 2) of the 
present work, and the computational architecture (Section 3) adopted 
for our simulations. Experimental results are then illustrated and ana-
lysed with linear mixed effects models (Section 4). A general discussion 
(Section 5) follows, summarising our results in the framework of an 
integrative model for task-based memory and processing strategies. 

2. Theoretical background

Families of inflectionally-related words (be they word paradigms 
such as walk, walks, walking, walked, or classes of identically inflect-
ing forms such as walking, playing, reading, etc.), or derivationally-
related words (e.g. form, formation, formal, formalize, formalization, 
etc.), have received increasing attention over the last 25 years, both 
in the theoretical literature on morphological competence, and in the 
psycho-linguistic debate on the organising principles of the mental 
lexicon. In particular, considerable emphasis has been laid on the role 
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of paradigmatic relations as principles of non-linear organisation of 
word forms in the speaker’s mental lexicon, facilitating their access, 
retention and use (Baayen et al. 1997; Orsolini & Marslen-Wilson 
1997; Bybee & Slobin 1982; Bybee & Moder 1983; among others). 

In line with so-called ‘Words and Paradigms’ approaches to mor-
phological competence (Blevins 2006 among others), mastering the 
inflectional system of a language amounts to acquiring an increasing 
number of paradigmatic constraints on how paradigm cells should 
be filled in (see Ackerman et al. 2009; Finkel & Stump 2007; Pirrelli 
& Battista 2000; Matthews 1991; among others). The view is sup-
ported by growing evidence of the role of morphological paradigms 
in the developmental course of word acquisition. Children are shown 
to be sensitive to sub-regularities holding among paradigm cells (see, 
for a comprehensive picture, Bittner et al. 2003; on Italian, Orsolini 
et al. 1998; Colombo et al. 2004; on Polish, Dabrowska 2004, 2005). 
Contrary to both rule-based (e.g. Pinker & Ullman 2002; Albright 
2002) and most connectionist simulations of word acquisition (see 
Rumelhart & McClelland 1986; MacWhinney & Leinbach 1991; 
Plunkett & Juola 1999; among others), little evidence supports the 
assumption that one underlying base form can be used to produce, on 
line, all inflected forms of a paradigm. Rather, the relational struc-
ture of all forms of a paradigm appears to enforce global, distributed 
constraints on both word acquisition and processing, with redundant 
relations and multiple ‘bases’ playing a fundamental role in lexical 
competence (Burzio 2004). According to this view, the mental lexicon 
is an emergent integrative system, where words are concurrently, 
redundantly and competitively stored (Alegre & Gordon 1999; Baayen 
2007; Bybee 1995). No categorical distinction is made between regu-
lar and irregular inflected forms, nor between uniquely stored bases 
and non-base forms, seemingly derived by speakers on demand (see 
Baayen 2007; Marzi 2014 for a recent overview). An interesting com-
putational consequence of this view is that storage and processing are 
mutually implied. First, to capture the fact that words encountered 
frequently exhibit different lexical properties from words encountered 
less frequently, any model of lexical access must assume that access-
ing a word in some way affects the access representation of that word 
(e.g. Forster 1976; Marslen-Wilson 1993; Sandra 1994). Accordingly, 
entries for high-frequency words are assumed to exhibit higher levels 
of resting activation and are typically associated with entrenched, 
whole-word memory representations. In contrast, low-frequency 
words are associated with weaker and more distributed lexical rep-
resentations, accounting for their complex morphological structure 
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(Schreuder & Baayen 1997; Baayen & Schreuder 1999, 2000). Even 
though word forms are memorised in the lexicon irrespective of 
their degree of morphological complexity, not all of them are memo-
rised equally: their representations in fact reflect the way words are 
processed, with levels of entrenchment and levels of resting activa-
tion being a function of the probabilistic support words receive from 
repeatedly successful processing steps. 

Secondly, processing is in turn based on existing memory struc-
tures. This is the tenet of so-called ‘memory-based’ models of language 
processing (e.g. Daelemans & van den Bosch 2005), according to 
which analogy-based re-use of stored examples is more suited for lan-
guage processing than the application of rules extracted from those 
examples. The approach has received support from recent advances 
in understanding the neuro-anatomical areas supporting memory 
(Wilson 2001; D’Esposito 2007; Ma et al. 2014), showing that work-
ing memory consists in the transient activation of long-term memory 
structures, controlled and maintained by the integration of auditory-
motor circuits in the perisylvian network (Catani et al. 2005; Shalom 
& Poeppel 2008). This can explain speed-up effects in processing 
high-frequency words. Words that are seen more often will activate 
the same memory circuits over again, whose strength is increased 
as a function of repeated usage. As a result, some circuits gradually 
specialise to respond to some input words only, increasing their speed 
and processing efficiency. Likewise, words in large, densely intercon-
nected word families are reacted to by speakers more quickly in lexi-
cal decision tasks (Baayen et al. 1997; Ford et al. 2003; Lüdeling & de 
Jong 2002), with words belonging to large, highly entropic, inflection-
al paradigms being accessed faster and more accurately than words 
in smaller paradigms (Moscoso 2007; Moscoso et al. 2004).

The cognitive literature on similarity-based principles of word 
association has greatly contributed to understanding effects of fam-
ily size and frequency of neighbouring words on a variety of word 
processing tasks: non-word repetition (Vitevitch et al. 1997; Vitevitch 
& Luce 1998), recall from verbal short-term memory (Gathercole et 
al. 1997), phoneme identification (Pitt & McQueen 1998) and word 
recognition (Luce 1986; Luce & Pisoni 1998). Beyond specific differ-
ences depending on the nature of the input stimuli (e.g. acoustic vs. 
visual) and the processing requirements of the task (e.g. word recogni-
tion vs. word production), an interesting general pattern of reversal 
emerges: neighbours have facilitative effects on spoken word produc-
tion and inhibitory effects in spoken word recognition. Furthermore, 
the frequency distribution of neighbours plays an important role in 
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determining whether competition/co-activation effects are facilitative 
or inhibitory: high-frequency neighbours tend to exert an inhibitory 
effect on some processing tasks, while low-frequency neighbours facil-
itate execution of the same tasks.

3. TSOMs

Temporal Self-Organising Maps (or TSOMs) are a variant of clas-
sical Kohonen’s SOMs (Kohonen 2001) specifically designed for pro-
cessing and storing time-bound series of symbols. A TSOM consists of a 
grid of fully interconnected processing nodes that concurrently activate 
in response to input symbols shown in temporal contexts (Koutnik 
2007; Ferro et al. 2010a; Pirrelli et al. 2011; Marzi et al. 2012; Marzi 
et al. 2014). Map nodes mimic neural receptors that are trained to get 
increasingly sensitive to specific time-bound input signals. 

In TSOMs, learning consists in the topological (pattern match-
ing) and temporal (pattern synchronisation) co-organisation of con-
nection weights on multiple levels of connectivity (Figure 1). Hebbian 
rules are applied at all levels, so that nodes highly responsive to a 
stimulus (e.g. a given input symbol in a given context) will be even 
more responsive to that stimulus as training goes on. Conversely, 
nodes weakly responsive to a stimulus, will be even less responsive 
to that stimulus. After training, each node in a TSOM can be labelled 
with the input symbol the node responds most strongly to. 

3.1. The architecture
A TSOM is a grid of processing nodes with multiple levels of 

weighted connections, propagating information with different time 
delays (Figure 1). Input connections are used to get synchronous 
information from an input layer, where individual stimuli are sam-
pled at one-time tick. The amount of information conveyed by each 
connection is a direct function of its weight, ranging in the [0; 1] inter-
val. Temporal connections, on the other hand, simulate neuron syn-
apses with one-tick delay propagation. Their weights determine the 
amount of influence that activation of one node at time t has on the 
activation of nodes at time t + 1. Temporal connections thus convey 
the probabilistic expectation that any map node is about to be acti-
vated, given the current activation state of the map.

When a symbol is presented on the input layer, all nodes are 
fired synchronously. Their activation is the result of a weighted sum-
mation of signals on both input and temporal connections. For each 
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node on the map, its processing response to an input stimulus at time  
is given by:

(1) yi (t) = α ∙ yS,i (t) + (1 – α) ∙ yT,i (t)

where yS,i (t) is the amount of activation to the i-th node at time 
t flowing through input connections, and yT,i (t) is the temporal activa-
tion of the i-th node at time t triggered by the state of activation of all 
nodes at time t – 1. In the equation, α and (1 – α) weigh up the respec-
tive contribution of input connections (S) and temporal connections 
(T) to activation of node i. More intuitively, equation (1) integrates the 
state of map’s activation caused by the current input symbol with the 
amount of expectation raised by experiencing the immediately pre-
ceding symbol. 

Figure 1. Outline architecture of a TSOM. Map nodes show the Integrated Activation 
Pattern for the input string ‘#pop$’. For simplicity, only BMU (Best Matching Unit) 
nodes are labelled and connected through edges/arcs. Shades of grey depict levels of 
node activation. Forward temporal connections between BMUs are highlighted as 
black arcs.
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At each ensuing time tick, a new symbol is shown on the input 
layer. The newly generated pattern of node activation is recur-
rently integrated with the previous activation state of the map. 
When a time series of input symbols is terminated, the resulting 
Integrated Activation Pattern (or IAP) of nodes represents the pro-
cessing response of the map to the whole input series. Figure 1 illus-
trates an IAP for the input sequence ‘#pop$’, where ‘#’ and ‘$’ mark, 
respectively, the start and the end of the sequence. Shades of grey 
pictorially represent levels of node activation, corresponding to values 
Ŷ = {ŷ1, ..., ŷN}, where ŷi is the maximum level of activation reached by 
node  responding to ‘#pop$’, namely: 

(2) ŷi = max
t = 1,…, k

 { yi (t) }        i = 1, …, N

where i ranges over N map nodes, and t over symbol positions in the 
input string.

Connection weights are not wired-in, but trained after presen-
tation of each new input signal. Following synchronous activation 
of the map by an input signal, the most highly activated node, or 
Best Matching Unit (BMU), is trained in two steps. First, weights 
on all input connections to BMU are adjusted for them to be closer 
to the current input signal. Likewise, all temporal connections to 
BMU are made more correlated with the overall activation pattern 
of the map at time t – 1. In particular, the weight on the connection 
between BMU at t – 1 and the current BMU is increased (potentia-
tion, Figure 2, left); the weights on the connections between all other 
nodes and the current BMU are decreased (inhibition, Figure 2, left). 
Secondly, weight adjustment spreads radially to neighbour nodes with 
a Gaussian function centred on the current BMU. Radial propagation 
prompts information sharing and training dependence between topo-
logically adjacent nodes, which are thus trained to respond alike to 
similar input stimuli (Pirrelli et al. 2015).

The two training steps ensure selective specialisation of map 
nodes. Nodes get gradually more sensitive to specific time-bound 
instantiations of input symbols. For example, given an input bigram 
ab, the connection weight between BMU for a at time t – 1 and BMU 
for b at time t increases when a precedes b. The same connection 
weight decreases when b is preceded by a symbol other than a (see 
Figure 2, left). Due to this dynamic, if ab is a high-frequency input 
bigram, the map will develop a specialised node for b in ab, i.e. a node 
that is selectively activated each time the BMU for a is activated at 
the immediately preceding time tick (see Figure 2, right). Conversely, 
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lower frequency bigrams tend to activate less specialised BMUs, or 
‘blended’ BMUs (Marzi & Pirrelli 2015), meeting the requirements of 
different time-bound instances of the same symbol. 

Selective specialisation of map nodes propagates through time. 
Given the trigram abc being repeatedly input to a TSOM, the map 
will first develop a specialised BMU responding to b following a. In 
turn, the BMU will strengthen a temporal connection to another 
dedicated BMU responding to c following b. In general, any sequence 
of symbols can be associated with a specialised integrated pattern of 
BMUs (IAP) depending on its own relative input frequency, the map’s 
plasticity and availability of map nodes (Pirrelli et al. 2011; Marzi & 
Pirrelli 2015). 

Turning back to the IAP of Figure 1, the top-most activated 
units are, by definition, the BMUs responding to ‘#’ in first position, 
p in second position, o in third position, p in fourth position and ‘$’ 
in fifth position in the input string. Note that, due to selective spe-
cialisation and radial propagation, two distinct, topologically close 
BMUs are recruited to respond to the same symbol p in different con-
texts. Finally, the IAP is synchronised with a localist word-level node 
through a layer of IAP connections, keeping long-term memory of the 
activation pattern in their weights.

Figure 2. Left: Graphical representation of rules for temporal Hebbian learning: the 
‘+’ edge stands for a potentiated connection, ‘–’ edges for inhibited connections. Right: 
Range of forward one-tick-delay connections leaving node ‘A’ at time t – 1. The solid 
edge represents the strongest connection, and dashed edges represent weaker connec-
tions. In both graphs, nodes with larger labels represent BMUs at consecutive time 
ticks. Shades of grey indicate levels of node activation.
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3.2. Using TSOMs as lexical maps

When a TSOM is trained on a set of word forms, weights on all 
connectivity layers are adjusted in an experience-dependent way, as 
a function of the frequency distribution and the amount of formal 
redundancy in the training data. After an initial period of random 
variability, where nodes activate chaotically and inter-node connec-
tions are distributed uniformly, a map gradually develops increas-
ingly specialised IAPs for words in the training set. Thanks to the 
interplay between selective specialisation and radial propagation, a 
TSOM apportions its processing resources for them to respond more 
strongly to more frequent input words, and less strongly to less fre-
quent words. This is the result of strengthening repeatedly used con-
nections, which are specialised for processing highly expected input 
signals. Weaker resources are kept for less frequent but typical words. 

Due to this bias, high-frequency words tend to be associated 
with entrenched IAPs, whose BMUs are strongly connected with one 
another, and weakly connected with any other nodes. Specialised 
inter-node connectivity makes BMUs more salient and less confus-
able, as they receive stronger support through temporal connections 
than any other node. The same is true of BMUs responding to formal-
ly atypical words in the lexicon, i.e. words surrounded by few or no 
lexical neighbours. Since they are fairly isolated, atypical words are 
likely to activate fairly specialised BMUs. 

Low-frequency typical words, on the other hand, are associated 
with ‘blended’ BMUs, which are densely and weakly connected with 
many other nodes, to meet the input requirements of more words. 
Because of poorly selective connectivity, their levels of activation are 
more evenly spread through their IAP, thus suffering the competition 
of other non-BMU nodes in the same IAP, and the parallel activation 
of other IAPs associated with similar input words. 

When TSOMs are trained on highly redundant input data such 
as verb paradigms, specialisation and blending may interact. Figure 
3 gives a graph-like representation of the possible temporal connec-
tivity of BMUs responding to some verb forms of German glauben 
‘believe’. A pool of shared BMUs is associated with the common verb 
stem glaub-, their temporal connections being strengthened each 
time any form of glauben is input to the map. In addition, the special-
ised glaub- sub-pattern is connected with many inflectional endings 
through a blended range of one-to-many forward connections (see 
Figure 3). Upon activation of the b node at time t, the map propa-
gates the activation through its forward temporal connections and 
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prospectively co-activates up-coming nodes. Ultimately, activation of 
the blended IAP of any form of glauben co-activates IAPs for the other 
members of the same paradigm, which will in turn compete for selec-
tion. Hence, activation of a sub-pattern shared by members of the 
same paradigm prompts paradigm-sensitive co-activation and compe-
tition of blended IAPs. 

Owing to this dynamic, IAPs are not only short-term processing 
responses of the map to input words. The long-term knowledge sit-
ting in BMUs’ connections makes IAPs also routinized memory traces 
of the same processing responses. Given an IAP and the temporal 
connections between its BMUs, a TSOM can use this knowledge to 
predict, for any currently activated BMU in the IAP, the most likely 
upcoming BMU. This makes it possible to test the behaviour of a 
TSOM on two classical lexical tasks: serial word access and word 
recall. The two processes are simulated as described in the following 
sections.

Figure 3. Graph-like representation of the temporal connectivity of BMUs associated 
with some inflected forms of glauben. BMUs responding to word final symbols are 
double-circled. Shades of grey depict levels of node activation at time t. The BMU at 
time t propagates its expectations to prospective BMUs (time t + 1), whose varying 
levels of pre-activation reflect the probabilistic support they receive from the current 
BMU. Only relevant connections are shown. 
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3.2.1. Serial word access
In serial word access, we simulate how the map can predict an 

incrementally presented input word. After training, each word in the 
training set is progressively presented to a TSOM by showing one 
symbol at a time on the input layer. Upon each symbol presentation, 
the TSOM is prompted to complete the current input string, by antici-
pating its possible continuation. A TSOM can predict a progressively 
presented input word by propagating activation of the current BMU 
through its forward temporal connections, and outputting the label  
associated with the most strongly (pre)activated node:

(3) BMU (t + 1) =   argmax
i = 1,…,N

 {mi,h}      h = BMU (t)

where mi,h is the weight value on the forward temporal connec-
tion from the node h to the node i. Each correctly predicted symbol 
in the input word is assigned the prediction score of the preceding 
symbol incremented by 1. Otherwise, the symbol receives a 0-point 
score. 

In the experimental results reported in Section 4.3, we averaged 
per-symbol prediction scores across the input word’s length, to reflect 
how ‘wordlike’ the input word is, i.e. how typical with respect to other 
words in the lexicon (Bailey & Hahn 2001). This is a measure of glob-
al, lexical familiarity, and depends on how many neighbours the input 
word has in the lexicon, irrespectively of its own level of memory 
entrenchment. 

3.2.2. Word recall
Given a word’s IAP, we can use it as an input activation pattern 

to test how well the map can retrieve the word from its pattern. We 
simulate this by letting the map go through a word IAP, and itera-
tively output, at each time tick, the label of the current BMU. Since 
an IAP is a static pattern of synchronously activated nodes (equation 
2, Section 3.1), the task tests how accurately levels of node activation 
in the IAP encode information about the timing of the input symbols 
that make up the word. The process of recall consists in: (i) prompt-
ing the map with the start-of-word symbol (‘#’), (ii) integrating the 
IAP with the current temporal expectations and calculating the BMU, 
(iii) repeating step (ii) over again until the end-of-word symbol (‘$’) is 
reached. A word is recalled correctly if all its symbols are recalled cor-
rectly in the appropriate order.

More formally, the map iteratively processes the IAP as an input 
activation pattern according to:
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(4) yi (t) = α ∙ ŷi + (1 – α) ∙ yT,i (t)

where, at each time t, the most highly activated i node is the 
result of integrating information in the current IAP (ŷi in Equation 4) 
with the dynamically updated expectations of the map ( yT,i (t)).

Some IAPs are more confusable than others. The recall of a word 
from its IAP can be more or less easy depending on the degree of co-
activation of other non-target IAPs whose BMUs are highly activated 
in the target IAP. For example, if two input strings present some sym-
bols in common (e.g. write and written, macht and gemacht), they will 
tend to activate largely overlapping patterns of nodes. To counteract 
the potential interference of spurious BMUs during recall, a map 
can filter out nodes whose level of (co-)activation does not reach a set 
threshold. The stronger the competition of potential intruders, the 
higher the threshold needed to filter them out. The amount of filter-
ing (or threshold level) required can thus tell us how difficult it is for 
the map to recall the target word. 

4. Experimental evidence

4.1. Data and design
Fifty German and fifty Italian verb sub-paradigms were selected 

among the most highly ranked paradigms by cumulative frequency 
in a reference corpus (CELEX Lexical database for German, Baayen 
et al. 1995; Paisà Corpus for Italian, Lyding et al. 2014), to study the 
dynamics of word and paradigm acquisition in German and Italian 
verb inflection. 

For each paradigm, an identical set of 15 cells was used for train-
ing, for an overall number of 750 inflected forms for each language. 
Each data set was administered to the map for 100 epochs under 
two different training regimes: a uniform distribution (UD: 5 tokens 
per word), and a function of real word frequency distributions in the 
reference corpus (skewed distribution or SD: with token frequencies 
in the range of 1 to 1001). For each training regime, we ran 5 TSOM 
instances. More details on dataset distribution and composition are 
given in Appendix.

By varying frequency distributions and comparing the effects of 
inflectional complexity of training data on lexical access, word recall 
and word acquisition, we wanted to gain some insights into the inter-
play between morphological regularity and word frequency. After 
training, we monitored the behaviour of the resulting TSOMs (namely 
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UD Italian, SD Italian, UD German and SD German, over 5 different 
instances to then average our results) by inspecting the time of acqui-
sition of words and paradigms. For this purpose, we define the time of 
acquisition of a single word as the training epoch whence a TSOM can 
accurately recall the word in question from its IAP. Likewise, for each 
paradigm, its time of acquisition by a map is the mean acquisition 
epoch of all forms belonging to the paradigm. 

4.2. Word and paradigm acquisition
As a general trend, TSOMs acquire word forms by token fre-

quency, with higher-frequency words being quickly memorised and 
successfully recalled at earlier learning epochs, as shown in Figure 
4, where token frequency is averaged over words that are correctly 
recalled at each learning epoch.1 This is not surprising, given the 
dynamic of selective specialisation illustrated in Section 3. A highly 
frequent input string tends to repeatedly activate the same pattern of 
nodes, strengthening the connections between sequentially activated 
BMUs, and establishing a dedicated, highly responsive IAP. 

When it comes to the actual timing of paradigm acquisition, 
however, things get considerably more complex, with the notion of 
morphological regularity interacting non-trivially with token fre-
quency distributions. In both German and Italian, the vast major-
ity of paradigms are acquired significantly earlier2 (p <  .005) in a 
UD regime than in an SD regime (Figure 5). All in all, paradigm 

Figure 4. A scatter plot of the mean token frequency of correctly recalled words 
for the first 30 learning epochs of two TSOMs trained on Italian (black circles) and 
German data (white circles) in a skewed regime (SD).
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Figure 5. Time course of regular (left) and irregular (right) paradigms ranked top-
down by decreasing learning epoch; results are shown for both skewed distributions 
of training data (SD: grey circles) and uniform distributions (UD: white circles), for 
German (top) and Italian (bottom). Values are averaged across 5 map instances for 
each type. Paradigm cumulative frequencies are given in brackets.
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acquisition does not appear to be solely influenced by token fre-
quency effects. What particularly matters is how token frequencies 
are distributed both within each paradigm and across paradigms, 
with relative frequency distributions causing more global effects 
on ease and speed of acquisition. Only a handful of high-frequency 
irregular German paradigms make exception to this trend: the par-
adigms of sein ‘be’, werden ‘become’ and haben ‘have’ (among oth-
ers) are found to be learned earlier when they are input to the map 
according to corpus-based distributions (SD regime). This seems 
to further suggest that frequency and regularity do not interact 
linearly, and that the effects of frequency on paradigm acquisition 
are crucially affected by the degree of morphological regularity and 
formal redundancy that words exhibit at the level of their inflec-
tional paradigm.3

In the German data, regular paradigms are less sensitive to 
token frequency effects and to differences in token frequency distribu-
tions than irregular paradigms are, as witnessed by the strong cor-
relation4 (r = .92, p < .00001) between the time courses of acquisition 
of regular paradigms in UD and SD regimes (Figure 5, top, left panel). 
That token frequency affects the acquisition of words in regular para-
digms to a lesser extent than the acquisition of irregular ones can be 
explained by observing that a TSOM takes advantage of the cumula-
tive frequency of stems across the whole paradigm. Words in regu-
lar paradigms, in fact, exhibit a statistically significant correlation 
between stem cumulative frequency and time of acquisition (r = -.36, 
p < .00001). 

This is not just a memory effect based on cumulative stem fre-
quencies. In both languages, regular paradigms tend to be acquired 
earlier (in terms of significantly earlier learning epochs, p  <  .01) in 
the UD training regime. Besides, in both training regimes, regular 
paradigms are acquired more quickly than irregular paradigms are, 
as they appear to be associated with significantly shorter learning 
spans (p  <  .005), i.e. lower number of epochs between the acquisi-
tion time of the first and the last member of a paradigm. It looks like 
uniformly trained maps are able to organise stored words in a more 
deeply interconnected network of associative relations, where nodes 
share information through distributed patterns of poorly specialised 
connections. Information sharing favours co-activation (i.e. spread-
ing of activation to other neighbouring/similar forms), perception of 
internal structure and, ultimately, generalisation across word families 
(Marzi et al. 2014).
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4.3. Frequency by regularity interaction
Many of the effects reported in the previous section are the 

dynamic result of two interacting dimensions of memory self-organ-
isation in TSOMs: (i) the linear dimension characterises serial pro-
cessing, and controls the level of predictability and entrenchment 
of memory traces (Integrated Activation Patterns, or IAPs) in the 
lexicon by strengthening weights over temporal connections; (ii) the 
vertical dimension characterises parallel processing activation, and 
controls the number of similar, paradigmatically-related word forms 
that get co-activated when a member of a paradigm is input to the 
map (Pirrelli et al. 2014).

The two dimensions appear to pull memory organisation in oppo-
site directions, namely serial specialisation and parallel co-activation, 
whose interaction accounts for interesting processing effects. When a 
high-frequency word is presented to a TSOM, its IAP suffers less from 
the competition of formally-related lower-frequency IAPs, since levels 
of activation of its nodes are on average higher, and inter-node con-
nections are stronger than those in lower-frequency IAPs. This means 
that high-frequency words are less confusable, more fully predictable, 
and can be recalled more easily than their low-frequency neighbours. 

On the other hand, blended patterns play an important role in 
the acquisition of regular and sub-regular paradigms. Verb forms 
sharing the same stem tend to activate partially overlapping or 
‘blended’ IAPs. Each time any of those forms is shown to the map, 
the connections between shared BMUs are strengthened over again. 
This prompts a boosting effect in acquisition, whereby a shared stem 
in a paradigm is responded to by a pattern of nodes whose level of 
entrenchment depends on stem family frequency rather than on word 
token frequency. This dynamic provides an algorithmic account of the 
observation that regularity favours acquisition of both high- and low-
frequency words, due to the facilitatory effect of having more words 
that consistently activate the same pattern of shared nodes. However, 
activation of partially overlapping IAPs, prompts a frequency-based 
competition for suffix selection.

Co-activation and competition are known to account for effects of 
family size and frequency of neighbouring words on a variety of word 
processing tasks. A large number of neighbours is known to support 
visual word recognition, with printed words with many neighbours 
being recognised more quickly than words with fewer neighbours 
(see Andrews 1997 for a review). However, when neighbours are con-
siderably more frequent than the target word, they appear to exert 
an inhibitory effect on recognition of the latter. A reversed effect 
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from facilitation to inhibition was shown in spoken word recognition 
and other related tasks (Luce & Pisoni 1998; Magnuson et al. 2007), 
where many neighbours are found to delay recognition of a target 
word. Reversal from neighbour facilitation to inhibition has recently 
been interpreted (Chen & Mirman 2012) as an effect of parallel vs. 
serial input. For example, in a task of word production or written 
word recognition, many neighbours have a facilitatory/supporting 
role, and production (or written word recognition) is faster for a word 
in a dense neighbourhood than for an isolated word. When the input 
is presented serially (e.g. in spoken word recognition), high-frequency 
neighbours engage in a competition and exert an inhibitory effect on 
word processing.

We see, here, a potential connection between these effects 
and the frequency-by-regularity interaction in word acquisition by 
TSOMs. Evidence that TSOMs find it easier to acquire words when 
their frequency distributions are more evenly spread within their 
paradigms, as opposed to a situation where few members of the 
paradigm are more frequent than the remaining members, seems to 
comply with a pattern of reversal from facilitation to inhibition based 
on neighbour competition. We suggest accounting for this evidence 
in terms of a co-activation/competition dynamic in the tasks of serial 
word access, based on prediction, and word recall, based on parallel 
activation of target BMUs and filtering. When a word is input to the 
map, it typically co-activates other members of its own paradigm, 
depending on the amount of regularity in the paradigm and the fre-
quency of paradigm members sharing the same stem. Both access 
and recall of the input word are thus affected by co-activation of other 
IAPs, but in different ways, depending on the number of forms shar-
ing the same stem (stem family size or neighbourhood size) and their 
cumulative frequency (or stem family frequency). In particular, we 
expect a highly entropic stem family to make, on average, full word 
prediction (suffix prediction) of a member more difficult. Conversely, a 
highly entropic family makes recall easier (i.e. requiring lower filter-
ing levels), since there is no other expected family member but the 
target word to be recalled from its IAP. 

Accounting for the dynamic of word access/recall and the pace of 
word acquisition by a TSOM through the same set of memory prin-
ciples that account for neighbourhood density and frequency effects 
in other processing tasks would show that a single computational 
framework can bring a number of apparently diverse effects to under-
lying unity. With this purpose in mind, we monitored the behaviour 
of Italian and German TSOMs (Section 4.2) on two tasks: serial word 
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access (Section 3.2.1) and word recall (Section 3.2.2). Word frequen-
cies and morphological regularity proved to be significant predictors 
both in German and Italian. To use morphological regularity as a pre-
dictor, we quantified the degree of inflectional regularity of a target 
verb form as the number of verb forms sharing the same stem with 
the target (or stem family size of the target word). In fully regular 
paradigms, where all inflected forms share the same stem, the stem 
family size is equal to the paradigm size (see Appendix).

4.3.1. Task one: serial word access
In the first task, serial word access, we modelled how well an 

input word can be predicted by a TSOM. The more input symbols are 
anticipated, the easier the prediction of the target word is. As a gener-
al trend, high-frequency words are predicted more easily than low-fre-
quency words are. In particular, a linear mixed effect model (LME)5 of 
mean word prediction on German data (Figure 6), with word frequen-
cy and degree of regularity as fixed effects, shows that, for frequencies 
being equal, words in larger stem families are, on average, easier to 
be processed (and accessed) serially than words in smaller stem fami-
lies. This is a type-token frequency effect: in regular paradigms (stem 
families6 with 9 and 8 neighbours), and irregular ones with only a few 
alternant stems (stem families with 7, 6, and 5 neighbours), stem-
sharing word types additively amplify the effect of token frequency on 
pattern consolidation, whereas words in highly irregular paradigms 
are typically more isolated, and thus rely more heavily (in case of sup-
pletive forms, exclusively) on their own token frequency.

In addition, more regular word forms can benefit from longer 
stems (Figure A.3 in Appendix), thus increasing the average number 
of predicted input symbols. 

On the other hand, co-activation of stem sharing words triggers 
competition for suffix selection. In words with larger stem families, 
inflectional endings are more difficult to predict than in words with 
smaller stem families. On average, suffixes are better predicted (i.e. 
they are more easily predicted by their stems) in more irregular verb 
families than in regular paradigms, where a greater number of neigh-
bours sharing the same stem selects different inflectional endings. 

The more verb forms share the same stem, the stronger the 
competition for accessing an inflectional suffix, as confirmed by 
a second linear model fitting German suffix prediction only, with 
word frequency, degrees of stem regularity, and suffix length as 
fixed effects (Figure 7, left). Suffixes in words that are surrounded 
by more competitors are less easy to predict when they are in the 
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low-medium frequency range. We observe, however, that the facilita-
tory effect of increasing frequency has a steeper rate when words 
are embedded in bigger stem families, where the few regulars in the 
high frequency range benefit both from their own token frequency 
and from absence of highly frequent competitors. In fact, a small 
increase in token frequency provides regulars with a comparatively 
larger advantage in suffix prediction, since regular paradigms pre-
sent on average higher levels of stem family entropy than irregulars 
do (Figure A.3 in Appendix).

Figure 6. Marginal plot of interaction effects between word frequency (x-axis) and 
degrees of stem regularity (number of neighbours) in an LME model fitting mean 
word prediction (y-axis) by TSOMs trained on German verb forms in the SD regime. 
Random effects: TSOM instances (n = 5), paradigms (n = 50). Fixed effects: word fre-
quency, number of neighbours.
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The same LME model fitted to Italian data (Figure 7, right) con-
firms that an increase in word frequency mostly favours prediction 
of suffixes in bigger stem families. The interaction of word frequency 
and degrees of stem regularity is even clearer in Italian, where suf-
fixes are on average longer than in German (Figure A.2 in Appendix).

The three models confirm that word forms containing recur-
rent sub-lexical structures can take advantage of the memory traces 
shared by other related forms: connections between shared nodes in 
‘blended’ IAPs are strengthened more quickly since recurrent sub-
lexical structures are shown more often in training, similarly to what 
happens with high-frequency isolated words. Conversely, stem shar-
ing increases the amount of uncertainty in the selection of an upcom-
ing inflectional ending, as a function of the cardinality of the stem 
family and the frequency distribution of its members.

This dynamic interaction can be observed in more detail by 
comparing average symbol prediction across different stem and suf-
fix positions for the two languages: German and Italian verb forms 
(Figure 8 top and bottom, respectively) in the uniform (left) and 
skewed (right) distributions.

In the training regime with no token frequency effects (Figure 
8, left plots), where inflected forms are uniformly distributed, acqui-
sition of regulars is typically paradigm-based, and regulars are, on 
average, more easily predicted than irregulars, as an effect of type 

Figure 7. Marginal plot of interaction effects between word frequency (x-axis) and 
degrees of stem regularity (number of neighbours) in an LME model fitting suffix net 
prediction (y-axis) by TSOMs trained on German (left) and Italian (right) verb forms 
in the SD regime. Random effects: TSOM instances (n = 5), paradigms (n = 50). Fixed 
effects: word frequency, number of neighbours, suffix length.
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frequency and overlaying of redundant morphological patterns (as 
shown in Figure 6). This is confirmed by the higher prediction rate 
for regular stems compared with irregular stems in both languages, 
shown by the steeper dashed lines across symbol positions in the stem 
(-6:-1 range on the x-axis, Figure 8, left plots), where the ‘-1’ position 
identifies the end of stems and ‘0’ the suffix onset.

It is important to emphasise that, in both languages, regularity 
increases the amount of processing uncertainty in predicting a suffix, 
as shown by the drop in prediction at morpheme boundary, and by the 
different slopes of dashed and solid lines across symbol positions in 

Figure 8. Marginal plots of interaction effects between symbol distance to the 
morpheme-boundary (x-axis) and stems/suffixes in regular (dashed lines) and irre-
gular (solid lines) paradigms, in an LME model fitting symbol prediction (y-axis) by 
TSOMs trained on German (top) and Italian (bottom) verb forms in both UD (left) and 
SD (right) regimes. Random effects: TSOM instances (n = 5), word forms. Fixed effects: 
distance to morpheme boundary, regular/irregular paradigm, stem/suffix, word fre-
quency, suffix length. 
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the suffix (0:6 range on the x-axis). This evidence is differently modu-
lated by real frequency distributions (Figure 8, right plots), where 
stems in regular paradigms are predicted less easily (less steeply 
ascending lines), due to a greater amount of memory resources devot-
ed to highly frequent words (most of which are irregulars).7

It is less easy to fully predict endings in German regulars, as a 
consequence of the highly embedded structure of German inflection-
al markers, illustrated by the word graph representation of Figure 
3 (Section 3.2). Branching nodes, in fact, cause uncertainty in serial 
processing and increase competition for suffix selection. In irregular 
paradigms, stem alternation considerably reduces the number of 
endings. 

Italian shows a similar pattern, with inflectional markers being 
longer and more distinguishable at earlier positions in both irregulars 
and regulars.

4.3.2. Task two: word recall
Turning to the second task, ease of word recall from IAPs is 

measured in terms of the amount of filtering required to accurately 
recall a word from its IAP (Section 3.2.2), with easy-to-recall words 
taking little or no filtering to be recalled accurately. We fitted a linear 
mixed effect model of word filtering with word token frequency and 
stem family size of the target word as fixed effects, for both uniform 
and skewed training regimes, whose marginal plots are shown in 
Figure 9.

When verb forms are uniformly distributed (Figure 9, left), 
regular and sub-regular paradigms (i.e. paradigms with a larger stem 
family size) are easier to recall: they require lower filtering levels, 
because members of the same stem family tend to develop blended 
activation patterns and benefit from cumulative activation of more 
word types sharing the same stem. In fact unlike serial word access, 
which only relies on the map’s prediction bias for the most likely can-
didate symbol in a pool of competing candidates (Equation 3), recall is 
based on the integration of the map’s temporal expectation (yT) with 
the IAP (ŷ) of the target word to recall (Equation 4).

When we move to more realistic distributions (Figure 9 right 
plot), we observe an interesting frequency-by-regularity interac-
tion. In the medium-high frequency range, words in more irregular 
paradigms are more easily recalled than regulars with the same word 
frequency. This is a consequence of the comparatively differential 
advantage that type and token frequencies give to irregulars and 
regulars. Irregulars benefit more from an increase in word frequency 
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than regulars do, since an increase in token frequency makes inter-
node connections stronger, levels of activation higher, non-target word 
co-activation lower. This dynamic directly affects ease of recall, in par-
ticular for words in irregular paradigms, whose IAPs contain fewer if 
any co-activated neighbours.

With regulars, neighbour co-activation is stronger and it weighs 
down the potential contribution of token frequency to facilitating 
recall. Conversely, in the low-frequency range, competition in regular 
paradigms is thus easily offset by the larger facilitatory contribution 
of many overlaying IAPs.

To focus on effects of co-activation/competition between blended 
IAPs within densely populated neighbour families (regular paradigms), 
we fitted an LME model to suffix filtering in regular paradigms only, 
using word frequency, stem family entropy and stem family frequency 
as fixed effects (Figure 10). More entropic stem families (i.e. families 
with uniformly distributed members) make it comparatively easier for 
words in the low-frequency range to be recalled than less entropic stem 
families do. Words in less entropic stem families require more suffix 
filtering in the low-frequency range, since they suffer the competition of 
high-frequency neighbours, but get more facilitation as word frequency 
grows. The interaction illustrates the impact of frequency distributions 
on competition for suffix recall. When a target word belongs to a highly 
entropic stem family, the facilitatory impact on suffix recall increases 

Figure 9. Marginal plot of interaction effects between word frequency (x-axis) and degre-
es of stem regularity (number of neighbours) in an LME model fitting mean word filte-
ring (y-axis) by TSOMs trained on German verb forms in both UD (left) and SD (right) 
regimes. Random effects: TSOM instances (n = 5), paradigms (n = 50). Fixed effects: word 
frequency, number of neighbours, stem family entropy, stem family frequency.
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only marginally with frequency. Conversely, in a low-entropy family, 
a low-frequency member suffers from the competition of higher fre-
quency members: by increasing word frequency, we are simply shifting 
our focus on the strongest competitors, whose recall gets increasingly 
easier as family entropy goes down.

To sum up, effects of frequency and regularity are the result of 
the interaction of a common pool of principles of correlative learning, 
but they are dependent on both training regime and processing task. 
Regularity is based on larger stem families (and relies on higher type 
frequencies), thus compensating for lower token frequencies with the 
joint support of family members. High token frequency, on the other 
hand, favours entrenchment of individual items, although it tends to 
interfere in families with low frequency members.

Figure 10. Marginal plot of interaction effects between word frequency (x-axis) and 
levels of stem family entropy (H) in an LME model fitting mean suffix filtering (y-axis) 
by TSOMs trained on German regular verb forms in the SD regime. Random effects: 
TSOM instances (n = 5), paradigms (n = 16). Fixed effects: word frequency, stem family 
entropy, stem family frequency.
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5. General Discussion

TSOMs offer a highly redundant model of lexical memory, where 
specialised IAPs, responding to a few input forms only, coexist with 
many ‘blended’ (or less specialised) IAPs, meeting the input require-
ments of several members of the same family, whose acquisition can 
take advantage of cumulative stem frequencies. 

The degree of specialisation of a pattern is defined by the num-
ber of strong temporal connections departing from each BMU in the 
pattern. The fewer these connections are, the more specialised the 
pattern is. It has been observed (Ferro et al. 2010b) that pattern 
specialisation is advantageous for word processing, since dedicated 
memory connections minimize the number of one-to-many inter-node 
transitions (Figure 2, right), thus reducing the degree of uncertainty 
in accessing and recalling a word form stored in a TSOM. The quan-
titative analysis offered in this paper supports this claim through a 
broader range of empirical evidence. In TSOMs, long-term expecta-
tions enhance successful prediction of upcoming symbols, and make it 
easier for a map to recall a sequence through its IAP.

This highlights one of the most distinctive features of integra-
tive models of lexical memory. Since long-term expectations are based 
on the probabilistic distribution of successful processing strategies, 
stored lexical representations can be conceived of as routinized pro-
cessing patterns. These patterns are ready-made processing routines 
that the lexical processor can flexibly use on demand, depending on 
input requirements. The evidence reported in this paper helped us 
understand more about the factors affecting this dynamic integration 
of representations and processing responses. The influence of these 
factors may vary as a function of the processing task.

5.1. Acquisition
The amount of general vs. specialised resources that are appor-

tioned by a TSOM through learning largely correlates with sensitiv-
ity to a gradient of morphological regularity, and makes contact with 
differences in processing strategies (serial processing vs. parallel 
activation). 

More regular forms share redundant structures with other 
words to a considerable extent: they are stored in blended activation 
patterns and processed accordingly. Their acquisition is ultimately 
a function of how often these shared structures are found in input. 
Thus the effect of word token frequency on entrenchment can capi-
talize on the cumulative token frequency of all members of the same 
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word family, whose contribution is additive. In the end, having more 
neighbours to rely on favours acquisition (Figure 5). 

Highly irregular forms are, by definition, relatively isolated, and 
get little (if any) support from the overall organisation of the majority 
of lexical forms. Hence, they tend to develop IAPs that are rarely used 
elsewhere by a TSOM. Although this may offer a competitive advan-
tage in early acquisition, where high-frequency words are acquired 
first (Figure 4), it is arguably not the most effective strategy for the 
acquisition of lexical data, which are attested with a Zipfian distri-
bution. Since the level of memory entrenchment of highly irregulars 
chiefly depends on how often they appear in the input (their token 
frequency), acquisition can only rely on rote learning, rather than on 
associative relations with already stored items. 

5.2. Serial processing and lexical access
Serial processing of an input word crucially exploits the predic-

tive power of forward temporal connections in IAPs. When we control 
for word frequency, forms in more regular paradigms are, on average, 
quicker to be processed serially than forms in irregular paradigms 
(Figure 6), since the former tend to cluster in larger word fami-
lies, and this makes regulars more familiar or ‘wordlike’, and their 
blended IAPs more ‘routinized’. However, stem sharing increases the 
amount of uncertainty in the selection of an upcoming suffix (Figure 
7), accounting for effects of slower completion of words with more 
neighbours. This is a function of the cardinality of the word fam-
ily, and of frequency distribution of family members. In our training 
sets, word token frequency was distributed more uniformly in regu-
lar paradigms than in irregular paradigms (see Appendix), and this 
increased the amount of processing uncertainty at the stem-suffix 
boundary in regular paradigms.

On the contrary, forms in more irregular paradigms, suffer less 
from interference caused by co-activation of overlapping IAPs, and 
due to their higher frequency they develop more deeply entrenched 
temporal connections. Furthermore, irregularly inflected words typi-
cally undergo stem alternation processes (as in finden vs. fanden, or 
vengo vs. vieni), which bring forward their recognition uniqueness 
point, and reduce competition for suffix selection.

Although it is always difficult to draw general conclusions from 
corpus-based frequency distributions, we believe this to be a general 
pattern in the inflectional morphology of the two languages. It is a 
remarkable fact that TSOMs prove to be sensitive to structure-based 
effects at morpheme boundaries, and that these effects correlate with 
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measurable levels of weight distribution over connections straddling 
morpheme boundaries (Figure 8). This evidence shows that paradigm 
entropy is in fact a measure of how evenly members of the same 
word family compete/co-activate in processing. Uniform distributions 
prompt tighter competition for suffix selection and this is, in general, 
detrimental for serial word access. 

5.3. Parallel activation and word recall
Does parallel activation help word recall? We observed that it 

does, but with some qualifications. The facilitative effect on word 
recall of highly entropic word families is particularly prominent when 
the frequency distribution of family members is in the low-medium 
range (Figure 9, right). For forms with comparatively low frequency, 
there is an advantage in being surrounded by many family members. 
Shared stem patterns largely offsets potential competition for suffix 
recall. In recalling a word from its IAP, a TSOM uses both its own 
temporal expectations (which may be conflicting if more words are 
co-activated) and contextual information available in the target IAP 
(which helps resolve conflicts). However, this is the result of a dynam-
ic balance, which can be tipped off by an increase in token frequency 
of family members. In the high-frequency range, irregulars are in fact 
recalled increasingly more easily, while regulars becoming compara-
tively less advantaged. This dynamic explains two important trends 
in our sets of experimental evidence on the pace of word/paradigm 
acquisition. First, high-frequency words are learned more quickly, but 
their low-frequency family companions are learned less easily. What 
is an advantage for item-based acquisition turns out to be a hurdle for 
paradigm-based acquisition. More regular items, on the other hand, 
tend to develop blended activation patterns, which benefit from the 
cumulative frequency of word family members. Blended IAPs are 
good for generalisation in acquisition, as they can be used for trans-
ferring knowledge of some members of the family to the whole family. 
This explains why more regular paradigms are acquired more quickly 
than irregular paradigms and are less affected by effects of token 
frequency distributions. At the same time, however, they suffer under 
competition in a task of serial word completion to a greater extent.

5.4. Concluding remarks
Our simulative evidence accords well with competition-based 

and usage-based models of language acquisition (Tomasello 2003; 
MacWhinney 2008), making the further suggestion that integra-
tive models of memory self-organisation can account for the appar-
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ent dualism between item-based acquisition of irregular forms and 
paradigm-based acquisition of regulars. We observed that, in TSOMs, 
item-based acquisition of high-frequency irregulars plays a major role 
at early learning epochs, as some irregular items are very frequent 
and develop dedicated IAPs. Type frequency effects emerge only later, 
due to the overlaying of redundant morphological patterns, but they 
play an increasingly important role in an emergent lexicon, shifting 
acquisitional strategies from word rote memorisation to dynamic 
memory-based generalisation. This general trend is influenced by 
degrees of morphological regularity and by the interaction between 
frequency and regularity, with frequency speeding up word acquisi-
tion, and regularity speeding up paradigm acquisition. 

It should be emphasised that the present account of the frequen-
cy-by-regularity interaction in word and paradigm acquisition is in 
line with general principles of memory self-organisation, and with 
effects of neighbour family size and frequency on word processing. 
We believe this convergence to be neither accidental nor trivial. One 
of the goals of our simulations was to show that a single computa-
tional framework, with the same set of parameters, can account for (i) 
effects of processing and memory interaction, (ii) differential effects 
of frequency and gradients of regularity in different processing tasks 
(e.g. serial lexical access vs. word recall), and (iii) facilitation to inhi-
bition reversal within the same task, depending on the interaction 
between regularity and frequency. The final goal was to bring several 
contrasting effects, which have so far been analysed and accounted 
for in terms of different computational models (with the exception of 
Chen & Mirman 2012), to underlying unity. In addition, proof that 
effects of morphological redundancy are the specific, emergent out-
come of more general, pre-morphological principles of memorisation 
of symbolic time-series, may also have interesting theoretical implica-
tions on issues of lexical architecture, suggesting that pre- and post-
lexical effects of word priming can in fact be based on a common pool 
of underlying processing mechanisms. 
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Appendix

Data in the two training sets show interesting common patterns 
as well as differences between German and Italian. Figure A.1 shows 
the box plot distribution of the stem family size for each paradigm in 
the training sets for German and Italian. A stem family is defined as 
the set of paradigmatically-related forms inflected on the basis of the 
same stem (as in German machen, mache, macht, machen, machten 
etc.). In regular paradigms, all inflected forms select a unique stem 
form (typically the infinitive stem or the present indicative stem), 
which may undergo systematic processes of stem formation in pre-
dictable paradigm cells (e.g. mach-en ‘make’ vs. ge-mach-t ‘made’ past 
participle). In irregular paradigms inflected forms may show unsys-
tematic patterns of stem variation across possibly unpredictable cells 
(e.g. German denk-en ‘think’ vs. ge-dach-t ‘thought’ past participle, 
and Italian venire ‘come’ vs. veng-o, vien-i ‘come’ first and second per-
son singular, present indicative). This makes it more difficult for a 
speaker to predict unknown inflected forms in highly irregular para-
digms than in regular and sub-regular paradigms. Hence, an estimate 
of how many different stem families are attested in a single para-
digm, and how many members each family has, defines a gradient of 
paradigmatic regularity, and, ultimately, gives information on how 
difficult a paradigm is to learn. 

Both training samples contain more instances of irregular para-
digms (i.e. paradigms requiring more than one stem for its inflected 
forms) than regular ones, the former occurring on average significant-
ly more often than the latter. Variance of stem family size is wider 
in Italian paradigms than in German ones. This confirms that the 
overall organisation of irregular Italian paradigms tends to be more 
fragmented and less predictable, with irregular paradigms containing 
more scattered stem families of significantly different size.

The two data sets are largely comparable on mean word fre-
quency and mean stem length (see radar plot in Figure A.2), but 
inflectional endings are, on average, longer in Italian than in 
German. Furthermore, because we count family members by the 
number of non-homographic forms attested in each paradigm, 
Italian stem families appear to be larger (i.e. with a greater number 
of stem family neighbours, or NNB) than German stem families, 
where, for example, the infinitive form (e.g. machen) is also found in 
two more paradigm cells. Likewise, members of Italian stem families 
are more evenly distributed than members of German stem families, 
as shown by their larger entropy scores. Finally, both languages 
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exhibit comparable differences between regulars and irregulars in 
terms of stem length, stem family size, and entropy of the stem fam-
ily (Figures A.3 left and right).

Figure A.1. Box plot distribution of stem family size for German (Left) and Italian 
(Right) paradigms in the two training sets. Paradigms are ordered top-down by decre-
asing values of paradigmatic regularity, namely by the mean number of stem family 
members (NNB, number of neighbours). Circles mark the family size mean, and bold 
lines the family size median. Labels in brackets stand for ‘regular’ (R) and ‘irregular’ 
(I), according to a traditional dichotomous classification. ‘+’ signs mark data outliers.
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Figure A.2. A radar plot of mean values for word frequency, stem and suffix length, 
stem family size (NNB: number of stem family neighbours) and stem family entropy 
(NB Entropy), in German and Italian training sets.

Figure A.3. Radar plots of mean values for word frequency, stem and suffix length, 
stem family size (NNB: number of stem family neighbours) and stem family entropy 
(NB Entropy) in regular and irregular paradigms, for German (Right) and Italian 
(Left) training sets.
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Notes

1  Recall scores at the end of training are as follows: UD Italian (99.7%, std=0.1%), 
SD Italian (types: 99.4%, std=0.3%; tokens: 99.9%, std=0.1%), UD German (99.8%, 
std=0.1%), SD German (types: 99.7%, std=0.2%; tokens: 99.9%, std=0.1%). 
2  In the whole paper, the two-sided Wilcoxon rank sum test is used to test the 
null hypothesis that data contain samples from continuous distributions with 
equal medians, against the alternative that they are not. The test assumes that 
the two samples, which can be of different length and whose distribution can be 
not normal, are independent.
3  Following Aronoff (1994) and Pirrelli (2000), inflectional (ir)regularity is 
defined here as a function of the number of unpredictable stem formation process-
es that apply within a verb paradigm. In fully regular paradigms, inflected forms 
require a single stem, which may undergo systematic changes in predictable para-
digm cells (e.g. mach-en ‘make’ vs. ge-mach-t ‘made’ past participle). In irregular 
paradigms, inflected forms present unsystematic patterns of stem variation across 
possibly unpredictable cells (e.g. denk-en ‘think’ vs. ge-dach-t ‘thought’ past parti-
ciple). This traditional dichotomous classification can be made more gradient by 
classifying verb paradigms according to the number of unpredictable stems they 
require (see Appendix). 
4  The Pearson product-moment correlation coefficient is calculated as a measure 
of the degree of linear dependence between two variables, giving a value between 
+1 and -1 inclusive, where 1 is total positive correlation, 0 is no correlation, and -1 is 
total negative correlation. The two variables are supposed to be normally distributed.
5  All linear plots in the paper are marginal plots of Linear Mixed Effects (LME) 
models, relating some characteristics of the training dataset (predictors) to the 
response of a TSOM (dependent variable). Predictors differ across models depending 
on the dependent variable and the theoretical questions being addressed. Plots are 
obtained ignoring the contribution to the model response coming from predictors 
that are considered as random effects: namely, the specific trained instance of the 
TSOM, the items in the dataset, and, when explicitly stated, also their paradigms. 
Only coefficients that are associated with fixed effects are used. When a fixed effect 
predictor is not directly shown in a model graph, the plot is obtained by using the 
predictor’s average value over the entire dataset. Unless stated otherwise, the range 
of each line in the graphs (i.e. the range of the predictor used on the x-axis) corre-
sponds to the range of the actual data in the dataset.
6  A stem family is defined as a set of paradigmatically-related forms whose 
inflection requires the same stem (see note 3 and Appendix). In regular para-
digms, all inflected forms belong to the same stem family. Irregular paradigms 
have more stem families, depending on their level of irregularity. For each 
inflected form, we can count the number of inflected forms (neighbours) that are 
members of the same stem family: the more the neighbours, the more regular and 
predictable the inflected form. 
7  The Pearson correlation, calculated between the token frequency of a word 
and the average number of BMUs responding only to that word, is r=.42, p-value 
<.00001 for German, and r=.34, p-value <.00001 for Italian.
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